US009424191B2

a2z United States Patent (10) Patent No.: US 9,424,191 B2
Cherukuri et al. (45) Date of Patent: Aug. 23,2016
(54) SCALABLE COHERENCE FOR MULTI-CORE 2009/0037658 Al* 2/2009 Sistla ..o 711/119
PROCESSORS 2011/0055515 Al* 3/2011 Khubaib et al. .. 711207
2011/0185125 Al* 7/2011 Jainetal. ... L7122
N X
(75) Inventors: Naveen Cherukuri, San Jose, CA (US); 2011/0296116 AL® 122011 Sistla o 71146
Mani Azimi, Menlo Park, CA (US) FOREIGN PATENT DOCUMENTS
(73) Assignee: g}tse)l Corporation, Santa Clara, CA WO 2014/004008 Al 1/2014
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this)) o)
patent is extended or adjusted under 35 International Search Report and Written Opinion received for PCT
U.S.C. 154(b) by 432 days. Patent Application No. PCT/US2013/044352, mailed on Sep. 25,
2013, 10 pages.
(21) Appl. No.: 13/539,044 International Preliminary Report on Patentability and Written Opin-
ion received for PCT Patent Application No. PCT/US2013/044352,
(22) Filed: Jun. 29, 2012 mailed on Jan. 8, 2015, 7 pages.
(65) Prior Publication Data * cited by examiner
US 2014/0006714 A1l Jan. 2, 2014 Primary Examiner — Yaima Rigol
(51) Int.Cl Assistant Examiner — Tasnima Matin
G0‘6F }2/0831 (201 601) (74) Attorney, Agent, or Firm — Vecchia Patent Agent, LL.C
GO6F 12/08 (2016.01)
(52) US.CL (57) ABSTRACT
CPC ... GO6F 12/0817 (2013.01); GO6F 12/0815 An apparatus of an aspect includes a plurality of cores. The
(2013.01); Y02B 60/1225 (2013.01) plurality of cores are logically grouped into a plurality of
(58) Field of Classification Search clusters. A cluster sharing map-based coherence directory is
None coupled with the plurality of cores and is to track sharing of
See application file for complete search history. data among the plurality of cores. The cluster sharing map-
based coherence directory includes a tag array to store corre-
(56) References Cited sponding pairs of addresses and cluster identifiers. Each of
the addresses is to identify data. Each of the cluster identifiers
U.S. PATENT DOCUMENTS is to identify one of the clusters. The cluster sharing map-
5014.195 A * 51991 Farrell et al. oo 711128 based coherence dlrectory also includes a cluster sharing map
5752060 A * 5/1998 Robertsctal. ... 712/23 array to store cluster sharing maps. Each of the cluster sharing
6,622,218 B2* 9/2003 Gharachorloo et al. 711/141 maps corresponds to one of the pairs of addresses and cluster
7,240,160 B1* 7/2007 Hetherington etal. 711/122 identifiers. Each of the cluster sharing maps is to indicate
2003; 0093624 Al* 5; 2003 Aflmllh et ?L ~~~~~~~~~~~~~~~ 711/141 intra-cluster sharing of data identified by the corresponding
%883‘ /8533% i} N ﬁ /588?‘ (B}lglizoeftail ’ 711/146 address within a cluster identified by the corresponding clus-
2005/0010728 Al* 1/2005 Piry etal. ..o 711/147 ter identifier.
2005/0188009 Al* 82005 McKinney et al. .. . 709/203
2009/0006808 Al* 1/2009 Blumrichetal. 712/12 27 Claims, 17 Drawing Sheets
CLUSTER SHARING
[P\I\AP«BASED HARDWAR% a58
Ao | PRGN smmeomer
waylo] wey(l] wayl2] way(3] waylD] wayll] wayl2] _way3]
setfd) sef[0}
set{0)] setf0]
yrgg’ 762,702 4 Reon
LINES
setlk! {eg,2BITS
EACH)

TAG ARRAY

NI

4 PER-WAY
> SELECTION

READOUT
UNES
864
TAG COMPARISON LOGIC 4
880 4 PERWAY
PER VIAY MATCH SIGNAL TeH

SIGNALS
{e.p. 4-BITS}

GENERATION LOGIC
862

o T ﬁ“i ; l{ﬁ
Et'tjsu-oﬁanJusmz 874-3

Sal?ﬁ}{ésgg}lf’ 8 & 8 &
ReAGOT — i sl
o [=]V

US 9,424,191 B2

Sheet 1 of 17

Aug. 23, 2016

U.S. Patent

L B4
01314 dviy
ONIYYHE THOD- T AVHNY OVL NI
904 JEONIONE ATVl AL
A o A
07 %,
701
b0y o Vi 0t 01 gmy
Iv1e 0134 S57H00Y
L& 0% v S v € 7)
it
e 001
)
IONIHIHOD
TUYMHYH
JHOOTIY

US 9,424,191 B2

Sheet 2 of 17

Aug. 23, 2016

U.S. Patent

I I Z Ot
ONIHYHS 3U00-TTY
38 10
031038 11dIND N -
L0375 AYM @mm
222+, o)
AN 1NOTYIY -) ST
Y A DB NOSIMYAROD OV1
SNREYHS THODTTY IR n . . -
r22 _l SANIT LA0GYIY
\ AYHHY OYL
M - T
Diliss hes
9T 907 [ohes sorzo7 1 70T | 70T fohes
fohes Iohos
[cihem [Zlhem [iMem [glfem chem [zZlfem [1lhem [plhem
%
PLd ,i\m f.aaN Le
AV AV OV
ONIYHS THOD-TTY FALYID0SY
FALVID0SSY 138 AN 138 AV

«Km;m

AGOLIHH] SONFHIHOD

AUVAAOHYH J3SYE-dY
SNIIYHS Z900-TW

U.S. Patent Aug. 23,2016 Sheet 3 of 17 US 9,424,191 B2

a0 FIG. 3
MULT-PROCESSOR APPARATUS (e.g., CHIP MULT-PROCESSOR)
gl e TITT T I CLUSTER
, \ 3481
(1 ThE TILE THE |
i gl oo e §
! 332 332 338 ;
; ¢ : ‘: : §—340~’.f
i | N coTmmTT o
WOoTE || TiE _ e || FRST | FRST |
| - o T Ry T MEMORY |
|| 3% 332 332 | || CONTROLLER | :
L_N:{ _______ T] R S
b
f 3421
T CLUSTER
- < INTERCONNECTS + 348N CLUSTER
vL fmmwazaz; w— i SHARING
T T T T g T MAP-BASED
§ / § HARDWARE
(] TLE - THE) { THE " COHERENCE
1. 332 - a2 | amg}z;om
! 1 _ | £
' CLUSTER
SECOND HARDWARE
MEMORY | COHERENCE
CONTROLLER | 9402 34611 7 yacs
-3
b
| SECOND t~-342.2
| MEORY |
FIG. 4
. THE
CORE(S) - 432
436
CACHE(S)
437
ROUTER
438

U.S. Patent

Aug. 23, 2016 Sheet 4 of 17

FIG. 5

US 9,424,191 B2

MULTI-PROCESSOR APPARATUS
330

FIRST CLUSTER OF CORES
§48-1

CORE o CORE
536 236

NP CLUSTER OF CORES
548-N

CORE . CORE
536 536

U.S. Patent Aug. 23,2016 Sheet 5 of 17 US 9,424,191 B2

FIG. 6
THIRTY-TWO CORE APPARATUS
8§30
CORE CORE
ERST f) CORE CORE
CLUSTER 636 636
5481
CORE CORE CORE CORE
SECOND CORE CORE CORE CORE
CLUSTER
646-2—
CORE CORE CORE CORE
THIRD CORE CORE CORE CORE
CLUSTER
§48-3
CORE CORE | | coRE CORE
FOURTH CORE CORE CORE CORE
CLUSTER
648-4 ——
CORE CORE CORE CORE

US 9,424,191 B2

Sheet 6 of 17

Aug. 23, 2016

U.S. Patent

L B
(73 oW
ONRIYHS Y1801 AVHHY OV N
$G/ GIANION ATWOIdAL
e A 's h
L |yl
fenaz “Bal FET
(S1gE e el
U O ¢ A O ¢ I 2 O A a13i4 47314 o
a 11915 07314 SSIUaaY
HETIER
{Slig-g "Ga) \
HILEATO N .
3402 ¥3d 119 N0 052
37}
FONIHIHOT
SHYMOMYH
HILISNTD

US 9,424,191 B2

Sheet 7 of 17

Aug. 23, 2016

U.S. Patent

o0/ L = h = e 7o
VI ONIYHS T
oy < e 110GV
g 8 8 B dVADNNYHS
WIS ¥
m&mwu Nﬁmw%ﬁm,ﬁ}ﬂim W/
- E.,m SR
_ e g 708
. P oy Sy 5 91907 NOLYIINID
| ! N 9] oL va AN
i IVNOIS HOLYI AYM-MEd
W 8 N om
| i DIO0 HOSIYINOD DV
— /m‘%m\ Ve RN o o] 4 o0
ﬁm | 1] D e SINIT
QMS . S tultohunt Sivtplbt E W LAN0YIY
NOILOZ T3S | : AV D¥1
ASfHEd b ! w_ \
752 | | 3¢ | L bios
: ; “. % TR AT 501 204 :
{ohes {ohes
fohes [ohes
feliem [zlhem [ildem [pldem [clem [zMiem [1}Aewm
AYHHY Y OMINYHS Y2180 ®_ ppgeF PSR
gog# INLYIOOSSY L3S AVAYY LHOLOT SONTHIHOD 958" 301M0088Y 138 AV
FeVAACYH C3SVE-dvi
ONRIVHS ¥3L5010

US 9,424,191 B2

Sheet 8 of 17

Aug. 23, 2016

U.S. Patent

6 Ol4

SAH0T 30 HIGNNN

IZAN A% 952 (74 ¥9 43

P
e —
P
——

AMOLOTHIC 035v8 Y3150
AUOLOTHG GISYE THOTTW — — — — -

FOVHOLS 3HOYD 40 FDOVINIIMId ¥ SV HOVNOLS AYOLI3MIO

%0

%001

%002

34a

3218 FHOVO {348 ANCLD

U.S. Patent Aug. 23,2016 Sheet 9 of 17 US 9,424,191 B2

1078 N FIG. 10
TAG
¥
CLUSTER e . —_—
i | SMALL ALL-CORE SHARNG !
HAROUARE | MAP-BASED HARDWARE |
LR { COHERENCE DIRECTORY |
DRECTORY : (OFTIONAL) |
N é 1076 i
1044 "[
ALL-CORE
SHARING MAP
1008
-
. FIG. 11
TAG }
| SMALL ALL-CORE SHARING |
! | MAPBASED HARDWARE |
{ COHERENCE DIRECTORY
§ (OPTIONAL) !
CLUSTER : 1176 |
SHARING il —
MAP-BASED } ;
HARDWARE \ SELECTIONLOGIC /
DIRECTORY \ /
A 1??f /
1144 T “"{"
ALL-CORE
SHARING MAP

1106

&

US 9,424,191 B2

Sheet 10 of 17

Aug. 23, 2016

U.S. Patent

P e——

!
[e

¢ LIRWOD

S

g2t "9id

i1 Sie)
bl 90 ™ nnaovs viva @ 2 LN
IHOVD 712} HONIW
73 LN LYY
% 3
s (070 {SRRISAID NOLADIXD
[i A :?3 “0f
QS0 ol
sowan_| | NOILNGAX |
% : §1;uas;
i i -3
_w
21574 (S)LINN ST HILSIDIH TIISAH w
............. X T
odedimi ¥57} j
gﬁﬁaﬁ%@@@VL T&@ﬁﬁ%ﬁu
; Zeet L N} s i
f\ m f 3 ¥
. SDVPOOTII NN INIONT NOILADIXS
aezt
el LINN 30003 H Y Q?UWZQMM
L PP n
| NwmmﬂquMmMﬁgwonmhmx% B
9EZL LING 6L NOLLONHLSHN 2621 UNA
P pEzE ONG SHOYD NOLLOTMEN] NOLLOIOTHd HOWvas
 Wﬂ Z0Z) 71z I A
B =i 817t (S HONI Z12) ozy 1z
NOlLaoyal AHONEW | 38v1831n03x3 avad | 3I0a3H08 oNwyNad 00TV
N S EN waasiomd | L 1
¥Z1 "Oid

80z
EleeT

//l 0621 3400

e b

¥oTL
SNIGOT3C
H1ONET

Z0e)

H2134

002 INMT3dld "

US 9,424,191 B2

Sheet 11 of 17

Aug. 23, 2016

U.S. Patent

Yol
FHIYO Yivd 17

3

¥

8ELEL L FAAN
LHIANCO LHIANOD
DIYINNM THEHZINNN
4
riei
SH3LEID3Y
BCLIIN
1
¥ ¥ ¥ ¥
JELL ¥eT
HIZZWAS 3ivDiidad
LA 5
97el

I WOLD3A 30M-gL

F)

gZel
SHIALBIOFTY WSYI LA

gl "Dl

20et
AHOM LN ONIY
&
1

POEL
IHOVD
27 3H1L 40 1388N0S W30

1

k

a0eL
FHOYD L

el AR A
S63L8103Y BYIISIY

HOLOEA HYWOS
4

2 N B S

0iE) BOSH
o LNn LN
MOLOIA HYIOS

b . 4
4

aoel
FAOVIC MOILONHELISM

¥eL "Old

US 9,424,191 B2

Sheet 12 of 17

Aug. 23, 2016

U.S. Patent

PR @ [T T T T m T T T T M
HITIOHINGG] = = T T o

o e T oor huwn 3Hovo ks | M

gipbislunn (b STy FTo o T - |
ITIONINGY [y e VoY) P yom
SNg i hm..w._-_ZD W | om o SHIN A 20O01 1 i

b LAY YO | | asodung !

INZOY WIBAS | N2OYL TMOD) YOV MO0 | Wioads |

e At ottn s e [IPPROT N |

/8& HOSSO0Nd

U.S. Patent Aug. 23,2016 Sheet 13 of 17 US 9,424,191 B2

| =
l
r~ b —1 PROCESSOR |™ — =
- /'issﬁi
R A e |~ 1580
T [TCONTROLLER
o o ftes | MEMORY
| PROCESSOR N I EHIOS
L -
1560~ . L&
0 OH 1560 |
| |
L .__..._!

FiG. 15

US 9,424,191 B2

Sheet 14 of 17

Aug. 23, 2016

U.S. Patent

" YiYO 91 'Otd
220} res)
Gy 3400 1 s3ovac | 3snow
IOYNOLS YIYE L85t WINGD Zask JAEYOSADY
A «Jw
$191 29} P18t 815l
HOSSABOUS Of OIINY SIBIAIA Of AGCNE SNG
a9, — — — ..i_
9694~ # | 26yl —] M | eeol
N OBSTIO0HEA0G
a5a) —— d'd 0B9L LISAIHO Add L g ~mtmmko&o “
VeaL e e
#5601 269] —
e]
negL m\& d-d dd dd 0451
959} —— 201 — \ \ L. 5/9}
e £/91
059}
o 2891 2
S St
o) 7691
AHOWIN LSO
HOSSIOOUAOD HONEN
OSSN0 OSSO0

/ 00g)

US 9,424,191 B2

Sheet 15 0of 17

Aug. 23, 2016

U.S. Patent

yegl
AHONZA

41Ot

Gl
Off AV

85!
AOWEN

0881 T A
potug ~J
g —rd| I g e
o —1 § o1 —1 y
opey | dd| |dd dd ddi o
%8}~ gog, 3 \ N gy bl
6591)
=1 ws 77
e 13
HOSSI00N H0S3300Ud
e e e
viit |

m SEUAZCC

4

A
B st

——

\ o

US 9,424,191 B2

Sheet 16 of 17

Aug. 23, 2016

U.S. Patent

PLiL (SHUNA
el ol e 068l MITIONINGD
s peiagia | EEBHHNTIRGE s JHONN
ABLYHDILNI
T, e .. | \\v\,\.,\v
9191 (SILINA L
HATIOHENOD e
s] ENGET R -
11 !
\.‘ l‘.ﬂlli{si.il.ill[:r»]t‘!]!il);ili
it
2. w
{1t 90pL (SN BHOVD (RuHS
M= T17T 777
oy hor Yool
OLpL 1NN by 20Ty 3HOYD
INZOY WAISAS ! wzopt o0 | N

-

0284 (SIHO35IT0NID0

0181 HOSE300Ud NOLLYOINAdY

/r 0081

diHD Y NO W3LSAS

gl 'ald

US 9,424,191 B2

Sheet 17 of 17

Aug. 23, 2016

U.S. Patent

——
2061 FOVRONYT T3A3THOH)
T e r———
- ~& 8061 METINOD ™
(" voas w3100 §¥ _ LEsnouonuisn)
S o S SMLYNNELY

T e

Q@ 3000 AdviE o)

f/[f(:.:!.!\lii\\\\A \\\\\\‘(}!}.}fl;.{

716} HILHIANOD J
OLOMYLSN
/Jf.; fw,.mﬁ m:_m.w;w,_m\\\ Mm.!:)f
81 ‘Ol - < T

\ G161 3000 KNI
\{_ 1Esnouonisn)
mmégm /ffm,\,:i,ﬁm.gx\

Ty O H | «
¥ ’ N ¥
st PL6] HOT 135 NOLLONYLSN
IO LIS NOHLDNHLSN PO THL S S IS
o mvww %@%& 98% NY LAOHLIM HOSSI008d
1 HLIA HOSS3004d _

US 9,424,191 B2

1

SCALABLE COHERENCE FOR MULTI-CORE
PROCESSORS

BACKGROUND

1. Field

Embodiments relate to multi-core processors. In particular,
embodiments relate to maintaining data coherence in multi-
core processors.

2. Background Information

Chip multi-processors (CMPs), multi-core devices, and
other multi-processor apparatus have a number of cores or
processors on a single integrated circuit die or chip. Each core
generally has associated therewith one or more correspond-
ing local caches which are operable to cache copies of data
from one or more shared memories. The cores are generally
coupled together and are operable to share the data stored in
their local caches with one another.

It is generally important to maintain coherence, or a con-
sistent view of the data, across all of the cores. All-core
sharing map-based hardware coherence directories are one of
the commonly used hardware-based coherence mechanisms
in present day general-purpose processors to help maintain
coherence of data across all of the cores. These directories
represent hardware structures that are operable to track data
cached in the local cache(s) of all of the cores, as well as
which of the cores are sharing the data. All-core hardware
coherence tags are typically stored in the entries of the direc-
tories and indicate the sharing of the data.

FIG. 1 is a block diagram of a known all-core hardware
coherence tag 100. As the name implies, the all-core hardware
coherence tag has a scope of all of the cores and is operable to
indicate sharing of data among any or all of the cores. The
all-core hardware coherence tag includes an address field
102, a state field 104, and an all-core sharing map field 106.
The address field may indicate an address (e.g., of a cache line
caching a copy of data from memory and/or the memory
address ofthe data). By way of example, the address field may
have a length 0f 33-bits. The state field may indicate a state of
the corresponding data or entry in the directory (e.g., whether
the data or entry is modified, exclusive, shared or invalid). For
example, the state field may have a length of 2-bits. The 2-bits
may indicate any of four different states.

The all-core sharing map field 106 may indicate which of
the cores of a device are caching a copy of the data corre-
sponding to the address field as well. The all-core sharing map
field generally includes 1-bit for each of the cores. As shown
in the illustration, the all-core sharing map field has a length
of'32-bits or 1-bit for each of 32-cores. The 1-bit correspond-
ing to a given core is operable to indicate whether or not the
given core is caching a copy of the data. According to one
possible convention, a binary value of 1 (i.e., the bit being set)
may be used to indicate that the given core is caching a copy
of the data, whereas a binary value of 0 (i.e., the bit being
cleared) may be used to indicate that the given core is not
caching a copy of the data. For example, in the illustrated
embodiment, bits [0:5] having the respective values 01 100
1 may indicate that, for the said address, core 0 is not caching,
cores 1 and 2 are caching, cores 3 and 4 are not caching, and
core 5 is caching.

FIG. 2 is a block diagram of a known all-core sharing
map-based hardware coherence directory 210. The directory
is set associative and includes a 4-way set associative tag
array 212 and a 4-way set associative all-core sharing map
array 214. There is a one-to-one correspondence between
ways in the tag and cluster sharing map arrays. The tag array
212 is arranged as (k+1)-sets, labeled set[0] thorough set[k],

10

20

30

40

45

55

60

2

and four ways, labeled way[0] through way[3]. The address
and state fields are typically included in the tag array. As
shown, set[1] includes address 102 and state 104 fields in each
of way[1] and way[2]. The all-core sharing map array 214 is
also arranged as (k+1)-sets, labeled set[0] thorough set[k],
and four ways, labeled way[0] through way[3]. The all-core
sharing map fields are typically included in the all-core shar-
ing map array. As shown, set| 1] includes all-core sharing map
fields 106 in each of way[1] and way|[2]. Typically, the num-
ber of tags in the directory equals the total number of tags in
local/private caches of all cores to enable tracking distinct
cache lines.

During operation, when it is desired to know which cores
are caching data for a given address, the all-core sharing
map-based hardware coherence directory may be consulted.
The directory includes tag comparison logic 216. The tag
comparison logic may compare four addresses, each stored
within a different one of the four ways of a set, with a given
address. The four addresses may be read out on tag array
readout lines 218. Fither none of the four addresses may
match the given address, or at most a single address in a single
way may match the given address. Assuming single address in
a single way matches the given address, a way select signal
220, for example a 2-bit way select signal for a 4-way set
associative array, may be output from the tag comparison
logic to way selection logic 222. The way select signal may
indicate the single way having the matching address. Four
all-core sharing map fields, each in one of four different ways
of the corresponding set, may be readout of all-core sharing
map array readout lines 224 and provided to the way selection
logic. The way selection logic may select the single all-core
sharing map field on the single way indicated by the way
select signal. For example, if the way select signal indicates
way[2] (e.g., has a value of binary 10), then the all-core
sharing map field in way[2] may be selected and output as a
selected all-core sharing map 206. The output all-core sharing
map field indicates which of the cores are sharing the data.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The invention may best be understood by referring to the
following description and accompanying drawings that are
used to illustrate embodiments of the invention. In the draw-
ings:

FIG. 1 is a block diagram of a known all-core hardware
coherence tag.

FIG. 2 is a block diagram of a known all-core sharing
map-based hardware coherence directory.

FIG. 3 is a block diagram of an embodiment of a multi-
processor apparatus.

FIG. 4 shows an embodiment of suitable internal compo-
nents of a representative tile.

FIG. 5 is a block diagram of an embodiment of a multi-
processor apparatus having multiple processors or cores in
which the processors or cores are logically grouped into at
least two clusters, with each of the clusters including at least
WO Processors or cores.

FIG. 6 is a block diagram of a particular example embodi-
ment of a thirty-two core apparatus having thirty-two cores
logically grouped into four clusters that each includes a dif-
ferent set of eight of the cores.

FIG. 7 is a block diagram of an embodiment of a cluster
hardware coherence tag.

FIG. 8 is a block diagram of an embodiment of a cluster
sharing map-based hardware coherence directory.

US 9,424,191 B2

3

FIG. 9 is a graph plotting directory storage as a percentage
of cache storage as a function of number of cores for a con-
ventional all-core shared map-based hardware coherence
directory and a cluster shared map-based hardware coherence
directory.

FIG. 10 is a block diagram of a first embodiment of hard-
ware coherence logic that includes a cluster sharing map-
based hardware coherence directory and an optional small
all-core sharing map-based hardware coherence directory
that are accessed in sequentially.

FIG. 11 is a block diagram of a second embodiment of
hardware coherence logic that includes a cluster sharing map-
based hardware coherence directory and an optional small
all-core sharing map-based hardware coherence directory
that are accessed concurrently.

FIG. 12A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out-of-
order issue/execution pipeline according to embodiments of
the invention

FIG. 12B is a block diagram illustrating both an exemplary
embodiment of an in-order architecture core and an exem-
plary register renaming, out-of-order issue/execution archi-
tecture core to be included in a processor according to
embodiments of the invention.

FIGS. 13A-B illustrate a block diagram of a more specific
exemplary in-order core architecture, which core would be
one of several logic blocks (including other cores of the same
type and/or different types) in a chip.

FIG. 14 is a block diagram of a processor that may have
more than one core, may have an integrated memory control-
ler, and may have integrated graphics according to embodi-
ments of the invention.

FIG. 15, shown is a block diagram of a system in accor-
dance with one embodiment of the present invention.

FIG. 16, shown is a block diagram of a first more specific
exemplary system 1600 in accordance with an embodiment of
the present invention.

FIG. 17, shown is a block diagram of a second more spe-
cific exemplary system 1700 in accordance with an embodi-
ment of the present invention.

FIG. 18, shown is a block diagram of a SoC in accordance
with an embodiment of the present invention.

FIG. 19 is a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a source
instruction set to binary instructions in a target instruction set
according to embodiments of the invention.

DETAILED DESCRIPTION

In the following description, numerous specific details,
such as specific multi-core processors, specific directory con-
figurations, specific array configurations, specific core cluster
arrangements, specific logic implementation choices, spe-
cific logic partitioning/integration details, and the like, are set
forth. However, it is understood that embodiments of the
invention may be practiced without these specific details. In
other instances, well-known circuits, structures and tech-
niques have not been shown in detail in order not to obscure
the understanding of this description.

One limitation of all-core hardware coherence tags, all-
core sharing maps, and/or all-core sharing map-based hard-
ware coherence directories, is that the sizes of the tags, the
maps, and/or the directories tend to increase significantly
with increasing numbers of cores. As discussed above, the
all-core sharing maps include 1-bit for each of the cores so
that if the number of cores increase the number of bits within
each of the maps also increases. For example, in the case of

10

15

20

25

35

40

45

55

4

64-cores each of the maps may be 64-bits wide, in the case of
256-cores each of the maps may be 256-bits wide, and in the
case of 1024-cores each of the maps may be 1024-bits wide,
and so on. Moreover, these maps are typically stored in many
sets and ways. Accordingly, as the number of cores increase,
the amount of storage space needed to store all of the all-core
sharing maps and/or the size of the all-core sharing map-
based hardware coherence directories may tend to increase
significantly (in fact the rate of increase may tend to acceler-
ate). At some number of cores (e.g., somewhere around 512),
the amount of storage space needed to store all of the all-core
sharing maps and/or the size of the all-core sharing map-
based directory may even surpass the actual cache storage
space used to store the data being tracked. Such increased
storage space tends to increase the size, power consumption,
and manufacturing cost of the device. As a result, such all-
core hardware coherence tags, all-core sharing maps, and/or
all-core sharing map-based hardware coherence directories
do not provide a scalable solution that efficiently scales with
increasing numbers of cores. Other more scalable hardware
coherence approaches would be useful and would offer cer-
tain advantages (e.g., in terms of reduced storage, reduced
manufacturing cost, reduced area, reduced power, etc.).

As previously mentioned, in the all-core sharing map-
based hardware coherence directory, the number of tags
stored in the directory generally equals the total number of
tags in the local/private caches of all of the cores to enable
tracking distinct cache lines. When cache lines are shared by
two or more cores, fewer distinct addresses will generally be
tracked by the directory, such that the storage capacity of the
directory is not fully utilized in the presence of such sharing.
For example, assume each cache line is pair-wise shared by
two cores. In this case, only approximately half of the avail-
able directory storage capacity is being used. That is, as the
amount of sharing increases, the amount of available storage
space in the directory may tend to increase. In some embodi-
ments, the increased amount of available storage space in the
directory, as a result of sharing of data among cores, may
rather be utilized to make the hardware coherence directory
more scalable with increasing numbers of cores.

FIG. 3 is a block diagram of an embodiment of a multi-
processor apparatus 330. In some embodiments, the multi-
processor apparatus may represent a multi-core apparatus,
such as, for example, a chip multi-processor (CMP). The
illustrated multi-processor apparatus includes multiple tiles
332. In the illustrated embodiment, for purposes of illustra-
tion, nine tiles are shown. In other embodiments there may be
either fewer tiles (e.g., 4, 6, 8, or some other number of tiles)
or more tiles (e.g., 16, 32, 64, 80, 100, 128, 256, 512, 1024,
more than 1024, or some other number of tiles). There is no
requirement for the number of tiles to be an even number or a
power of two, although this may often be the case. In the case
of a CMP, the tiles are generally all disposed on the same
semiconductor substrate (e.g., an integrated circuit die or
chip). An interconnect 334 (e.g., an on-die or on-substrate
interconnect) couples the tiles together. In various embodi-
ments the interconnect may be configured as a mesh, a torus,
aring, or another known interconnect configuration. The tiles
and/or cores are logically grouped into a plurality of clusters
348-1, 348-N, although such grouping may or may not be
visible to software applications or operating systems. In vari-
ous embodiments, hardware, firmware, software, or some
combination, may logically group the tiles and/or cores. Gen-
erally, some aspects ofthe grouping (e.g., number of cores per
cluster) may be fixed by the hardware, fields, etc.

FIG. 4 shows an embodiment of suitable internal compo-
nents of a representative tile 432. The tile includes one or

US 9,424,191 B2

5

more cores 436. In one embodiment, the tile may include a
single core. Alternatively, the tile may include two or more
cores. The tile includes one or more local or private caches
437. In one embodiment, the tile may include a single cache.
Alternatively, the tile may include two or more levels of local
or private caches representing a local or private cache hierar-
chy. The tile also includes a switch or router 438 to couple the
tile with the interconnect 334. In general, various different
types of cores, caches, and switches or routers known in the
art may be utilized. The other tiles may have either the same,
similar, or entirely different internal components. Generally,
each of the tiles includes one or more cores and one or more
local caches although this is not required.

Referring again to FIG. 3, as shown, in some embodiments,
some but not all of the tiles may have a corresponding directly
coupled memory controller 340. In the illustration, two
memory controllers are shown, namely a first memory con-
troller 340-1 and a second memory controller 340-2. The
memory controllers could alternatively be oft-chip. Alternate
embodiments, may include either fewer or more memory
controllers. Moreover, in alternate embodiments the memory
controllers may be coupled with the tiles in a different
arrangement or configuration (e.g., coupled to different tiles,
etc.). Each of the memory controllers is operable to couple
with, and provide access to, a corresponding memory 342. In
particular, the first memory controller is operable to couple
with, and provide access to, a first memory 342-1. The second
memory controller is operable to couple with, and provide
access to, a second memory 342-2. Each of the first and
second memories may be shared by some or all of the tiles
and/or cores. In the illustration, the memories are shown in
dashed lines to indicate that they are not necessarily part of
the multi-processor apparatus, but rather may be system-level
components included in a system in which the multi-proces-
sor apparatus is deployed. The memories and memory con-
trollers need not be dedicated to any particular one of the
clusters.

Insome embodiments, each ofthe cores may be operableto
process or run one or more threads. Software is commonly
executed as multiple threads on multiple processors (e.g.,
cores) in order to provide concurrent processing, increase
processing throughput, reduce processing time, etc. Each
thread may represent a portion of software (e.g., a group of
instructions) that can be processed separately from (e.g.,
independently from and/or concurrently with) other portions
(e.g., threads). The threads may process data accessed in the
local or private caches within the tile of the core they are
running on, accessed in the local or private caches of other
cores, and/or accessed in the first and second memories.

The multi-processor apparatus includes an embodiment of
a cluster sharing map-based hardware coherence directory
344. The cluster sharing map-based hardware coherence
directory is operable to provide hardware-based data coher-
ence for the data shared by the cores and memories. The
cluster sharing map-based hardware coherence directory is
operable to store cluster hardware coherence tags 346. Fur-
ther details of the cluster sharing map-based hardware coher-
ence directory and the cluster hardware coherence tags will be
provided further below.

FIG. 5 is a block diagram of an embodiment of a multi-
processor apparatus 530 having multiple processors or cores
536 in which the processors or cores are logically grouped
into at least two clusters 548, with each of the clusters includ-
ing at least two processors or cores. In some embodiments,
the multi-processor apparatus may be a chip multi-processor
(CMP). In the illustration, a first cluster 548-1 and an Nth
cluster 548-N are shown, although there may optionally be

10

15

20

25

30

35

40

45

50

55

60

65

6

more than two clusters. The first cluster includes a plurality of
cores 536. The second cluster also includes a plurality of
cores 536. In some embodiments, all of the cores of the
multi-processor apparatus may be logically grouped into the
clusters. Alternatively, one or more of the cores may option-
ally be omitted from the clusters. In some embodiments, the
clusters may all have the same number of cores. Alternatively,
the clusters may optionally have different numbers of cores.
In some embodiments, each core may be included in one and
only one of the clusters. In some embodiments, the clusters
may include different non-overlapping sets of cores of equal
size. In one aspect, the cores within each cluster may poten-
tially be physically contiguous, adjacent, or neighboring,
cores (e.g., on a die or substrate). Alternatively, in another
aspect, the cores within each cluster may be physically inter-
leaved (e.g., every fourth core in the physical layout may be in
a given cluster), or can have any random combination chosen
at boot time, or during some other form of initialization.

FIG. 6 is a block diagram of a particular example embodi-
ment of a thirty-two core apparatus 630 having thirty-two
cores 636 logically grouped into four clusters 648 that each
include a different set of eight of the cores. In particular, the
apparatus includes a first cluster 648-1 having eight cores, a
second cluster 648-2 having eight cores, a third cluster 648-3
having eight cores, and a fourth cluster 648-4 having eight
cores. In this embodiment, all of the clusters have the same
number of cores, each core is included in one and only one of
the clusters, and each cluster includes a set of physically
contiguous, adjacent, or neighboring, cores. It is to be appre-
ciated that this is just one example. In other embodiments, the
cores may be grouped into either fewer or more clusters, with
the clusters including either fewer or more cores, with the
cores distributed between the clusters in different ways, with
the clusters including different numbers of cores, etc.

FIG. 7 is a block diagram of an embodiment of a cluster
hardware coherence tag 750. The cluster hardware coherence
tag has a scope of a cluster of cores (i.e., a subset of the cores),
not all of the cores as in the case of the all-core hardware
coherence tag 100 shown in FIG. 1, and the cluster hardware
coherence tag is operable to indicate sharing of data among
any or all of the cores within a single cluster.

The cluster hardware coherence tag includes an address
field 702 and a state field 704. The address field and the state
field may be similar to, or the same as, conventional address
fields and state fields known in the arts. The address field may
indicate an address. In some embodiments, the address field
may have a length of 33-bits. The state field may indicate a
state of the corresponding data or entry in the directory (e.g.,
whether the data or entry is valid or invalid). In some embodi-
ments, the state field may have a length of two bits. The two
bits may indicate any of four different states. For example, in
one aspect they may be MESI states or other similar states
known in the art. Some directories don’t distinguish between
the modified (M) and exclusive (E) states but instead always
assume that a cached copy could be modified.

The cluster hardware coherence tag also includes a cluster
identifier (ID) field 752. The cluster ID field is operable to
uniquely identify the particular cluster which the cluster hard-
ware coherence tag corresponds to. By way of example, if
there are four clusters, the cluster ID field may have a length
of'two bits, and binary 00 in the cluster ID field may indicate
afirst cluster, binary 01 cluster ID field may indicate a second
cluster, binary 10 in the cluster ID field may indicate a third
cluster, and binary 11 in the cluster ID field may indicate a
fourth cluster. Alternatively, if there are more or less clusters
the cluster ID field may have a longer or shorter length in bits.

US 9,424,191 B2

7

The cluster hardware coherence tag also includes a cluster
sharing map field 754. The cluster sharing map field has a
scope of a cluster of cores (i.e., a subset of the cores), not all
of'the cores as in the case of the all-core sharing map field 106
shown in FIG. 1. The cluster sharing map field is operable to
indicate intra-cluster sharing of data identified by and/or cor-
responding to the address field among any or all of the cores
within a single cluster identified by the corresponding cluster
identifier field. In some embodiments, the cluster sharing map
field may include 1-bit for each of the cores within the cluster.
In the illustrated embodiment, the cluster sharing map field
has a length of 8-bits. Each of the 8-bits corresponds to a
different one of eight cores within a single cluster. By way of
example, as shown in FIG. 6, the cores of a thirty-two core
apparatus may be logically grouped into four clusters each
having eight cores. Alternatively, if there are more cores in the
cluster the field may have more bits. The 1-bit corresponding
to a given core is operable to indicate whether or not the given
core is caching a copy of the data. According to one possible
convention, a binary value of 1 (i.e., the bit being set) may be
used to indicate that the given core is caching a copy of the
data, whereas a binary value of O (i.e., the bit being cleared)
may be used to indicate that the given core is not caching a
copy of the data. Alternatively, the opposite convention may
be used. Advantageously, the length in bits of the cluster
sharing map field is less than the length in bits of the all-core
sharing map field. The all-core sharing map field has a scope
of all cores of the apparatus, whereas the cluster sharing map
field has a scope of cores only within a single cluster and all
of'the cores of the apparatus are divided or partitioned among
at least two clusters. As a result, the amount of storage space
needed to store all cluster sharing map fields is less than that
needed to store all of the all-core sharing map fields. This
reduced storage space may offer advantages such as reduced
size, reduced power consumption, reduced manufacturing
cost, etc. This is especially true when the number of cores
becomes greater than about thirty-two. This may also help to
provide continued support for the widely used shared
memory programming model, which is prevalent on many
Intel Architecture based processors, when the number of
cores or processors increases, which may help to allow exist-
ing applications to be run without change.

The illustrated cluster hardware coherence tag is just one
illustrative example. In other embodiments, the fields of the
tag may have different sizes, the fields of the tag may be
arranged differently (e.g., the order of the fields may be
shuffled around), additional fields may be included in the
tags, etc. Moreover, it is not required that the bits of the fields
be contiguous. Rather, the bits of a field may be interleaved or
dispersed with bits of other fields if desired.

FIG. 8 is a block diagram of an embodiment of a cluster
sharing map-based hardware coherence directory 844. In
various embodiments, the cluster sharing map-based hard-
ware coherence directory 844 may be used in the multi-
processor apparatus 330 of FIG. 3, the multi-processor appa-
ratus 530 of FIG. 5, the thirty-two core apparatus 630 of F1G.
6, or an entirely different multi-core or multi-processor appa-
ratus. For example, specific or optional details described for
the directory 844 may also optionally be used for the directory
344. In some embodiments, the directory may be visible to
and/or used by all of the cores of a multi-core apparatus.

The directory is set associative and includes a tag array 856
and a data cluster sharing map array 858. In the illustrated
embodiment, the tag array is 4-way set associative and the
cluster sharing map array is 4-way set associative. Alterna-
tively, S-way set associative, or other desired arrangements
may optionally be used. There is a one-to-one correspon-

10

15

20

25

30

35

40

45

50

55

60

65

8

dence between ways in the tag and cluster sharing map arrays.
The tag array is arranged as (k+1)-sets, labeled set[0] thor-
ough set[k], and four ways, labeled way[0] through way|[3].
The number of sets may be any desired integer number (e.g.,
a number conventionally used in tag arrays), but typically a
power of 2. The cluster sharing map array is also arranged as
(k+1)-sets, labeled set[0] thorough set[k], and four ways,
labeled way[0] through way[3]. Alternatively, fewer or more
ways (e.g., eight ways) may optionally be used. In other
embodiments, the tag and cluster sharing map arrays may be
merged together into a single array.

In some embodiments, address fields, state fields, and clus-
ter ID fields, may be included in the tag array 856. For
example, as shown, set[k] includes corresponding address
fields 702, state fields 704, and cluster ID fields 752 in each of
way[1] and way[2]. In embodiments, the cluster sharing map
fields may be included in the cluster sharing map array 858.
For example, as shown, set[k]| includes cluster sharing map
fields 754 in each of way[1] and way|[2]. The address, state,
and cluster ID fields in way[1] and way[2] of set[k] of the tag
array respectively correspond to the cluster sharing map fields
in way[1] and way[2] of the cluster sharing map array within
a corresponding way.

During operation, it may be desired to know which among
all of the cores of the apparatus are sharing data correspond-
ing to a given address. Without limitation to the invention,
there are various possible reasons to want to know this.
Examples of possible reasons include, but are not limited to,
in order to maintain coherence (e.g., in order to change the
state of the data), in order to share the data between cores, etc.
By way of example consider the case of sharing data between
cores. When a given core is seeking the data corresponding to
the given address, it may use the given address to check one or
more of its corresponding local caches. If the sought data is
not found in the local cache(s), then the cluster sharing map-
based hardware coherence directory 844 may be consulted to
determine which if any of the other cores have the sought
data. This may be performed prior to accessing system
memory, which generally tends to take more time (e.g., higher
access latency). If the cluster sharing map-based hardware
coherence directory indicates that the sought data is present in
the local cache(s) of one or more of the other cores of the
apparatus, then the sought data may be provided from these
cache(s) to the core seeking the data. Alternatively, if the
cluster sharing map-based hardware coherence directory
indicates that the sought data is not present in the local cache
(s) of any of the other cores of the apparatus, then a copy of the
sought data may be obtained from the system memory, and
the cluster sharing map-based hardware coherence directory
may be updated to indicate that the requesting core now has a
copy of the data. For example, a cluster hardware coherence
tag may be stored in the cluster sharing map-based hardware
coherence directory with a bit corresponding to the request-
ing core set to binary 1 to indicate that it has a copy of the data.

In some embodiments, in order to determine which among
all of the cores of the apparatus are sharing data correspond-
ing to a given address, the cluster sharing map-based hard-
ware coherence directory may include logic to generate and
output an all-core sharing map 806. In some embodiments,
the all-core sharing map 806 may be similar to, or the same as,
the all-core sharing map stored in the all-core sharing map
field 106 shown in FIG. 1. In some embodiments, the all-core
sharing map may be generated from one or a plurality of
cluster sharing maps each corresponding to a given address
and each corresponding to a different cluster identifier. The
logic may rearranging the cluster sharing maps, from posi-
tions where they are stored in the cluster sharing map array to

US 9,424,191 B2

9

positions in the all-core sharing map, based on the different
corresponding cluster identifiers.

Advantageously, using the same all-core sharing map may
offer certain advantages. For one thing, this may help to make
the all-core sharing map (i.e., the output of the directory)
compatible with conventional coherence logic and/or coher-
ence protocols. This may help to reduce the amount of
changes and validation needed. The coherence logic and/or
coherence protocols may not even need to be aware of the
changes to how the all-core sharing map is generated. Alter-
natively, other embodiments are not limited to generating an
all-core sharing map that is the same as those shown for FIG.
1.

The cluster sharing map-based hardware coherence direc-
tory includes the tag array 856. The tag array is operable to
store corresponding pairs of addresses 702 and cluster iden-
tifiers 752. Each of the addresses is operable to identify data.
Each ofthe cluster identifiers is operable to identify one of the
clusters. The cluster sharing map-based hardware coherence
directory also includes a cluster sharing map array 858 that is
operable to store cluster sharing maps 754. Each of the cluster
sharing maps corresponds to one of the pairs of addresses 702
and cluster identifiers 752. Each of the cluster sharing maps is
operable to indicate intra-cluster sharing of data identified by
the corresponding address within a cluster identified by the
corresponding cluster identifier.

Logic associated with the hardware coherence directory
(e.g., a coherence directory controller) may indicate inter-
cluster sharing of a given data identified by a given address
between clusters (e.g., between a first cluster and a second
cluster) by storing different cluster identifiers (e.g., both a
first cluster identifier to identify the first cluster and a second
cluster identifier to identify the second cluster) in different
ways of a same set of the tag array. The logic may also store
different corresponding cluster sharing maps (e.g., both a first
cluster sharing map to indicate intra-cluster sharing of the
given data within the first cluster and a second cluster sharing
map to indicate intra-cluster sharing of the given data within
the second cluster) in different ways of a same set of the
cluster sharing map array. In some embodiments, lookup of
the tag and cluster sharing map arrays may be performed
sequentially (e.g., with the lookup in the tag array first),
whereas in other embodiments the lookup of the tag and
cluster sharing map arrays may be performed at least partly or
substantially concurrently.

The directory includes tag comparison logic 860. The tag
comparison logic may compare four addresses, each stored
within a different one of the four ways of a set of the tag array,
with a given address. The four addresses may be read out on
tag array readout lines 864. Either none of the four addresses
may match the given address, or for the four-way array one,
two, three, or all four of the addresses in the four ways may
match the given address. Recall that in the conventional all-
core sharing map-based hardware coherence directory 210 of
FIG. 2, at most a single address in a single way may match the
given address. When there is inter-cluster sharing (i.e., differ-
ent clusters share data corresponding to a given address),
multiple cluster ID fields 752 and address fields 702, each
corresponding to a cluster sharing map field 754, may be
stored in the same set of the directory. If no unused tags are
available in the set, a victim (e.g., a least recently used victim)
may be selected to make room for the new cluster sharing map
field.

The tag comparison logic includes per-way match signal
generation logic 862 that is operable to generate and output
four per-way match signals. Each of the four per-way match
signals indicates whether or not the comparison by the tag

20

25

30

40

45

10

comparison logic indicated an address match for a corre-
sponding way. For example, a first of the four per-way match
signals may indicate whether or not an address in way[0]
matched, a second of the four per-way match signals may
indicate whether or not an address in way| 1] matched, a third
of'the four per-way match signals may indicate whether or not
an address in way[2] matched, and a fourth of the four per-
way match signals may indicate whether or not an address in
way[3] matched. In some embodiments, each of the four
per-way match signals may include a single bit. The single bit
may have a first binary value (e.g., 1) to indicate that there was
a match and a second, different binary value (e.g., 0) to
indicate that there was not a match. Each of the four per-way
match signals may be provided to a different corresponding
one of four per-way selection logic 866 in the same way. A
first selection logic 866-0 corresponds to way[0], a second
selection logic 866-1 corresponds to way[1], a third selection
logic 866-2 corresponds to way[2], and a fourth selection
logic 866-3 corresponds to way|[3].

Four cluster ID fields 752 (only two of which are shown)
each in a different one of the four ways may be read out of the
tag array along cluster ID readout lines 868. Each cluster ID
field is operable to uniquely identify the particular cluster
which the cluster hardware coherence tag and/or the address
corresponds to. By way of example, if there are four clusters,
each cluster ID field may have a length of two bits, and binary
00 1in the cluster ID field may indicate a first cluster, binary 01
cluster ID field may indicate a second cluster, binary 10 in the
cluster ID field may indicate a third cluster, and binary 11 in
the cluster ID field may indicate a fourth cluster. Alterna-
tively, if there are more or less clusters the cluster ID field may
have a longer or shorter length in bits. The cluster ID readout
lines may be operable to read out the number of bits for each
of the four ways. Each of the four cluster ID fields may be
provided to a different corresponding one of four per-way
selection logic 866 in the same way. For example, the cluster
1D field in way[3] may be provided to the selection logic
corresponding to way|[3], etc. Recall that the cluster ID fields
indicate which cluster the bits of the cluster sharing map fields
correspond to.

Four cluster sharing map fields 754 (only two of which are
shown), each in a different way of the cluster sharing map
array 858, may be read out of the cluster sharing map array on
cluster sharing map readout lines 870. Each of the four cluster
sharing map fields may be provided to a different correspond-
ing one of the four per-way selection logic 866 in the same
way. For example, the cluster sharing map field in way[3] may
be provided to the selection logic 866-3 corresponding to
way[3], etc. Intra-cluster sharing (i.e., sharing among the
cores within a given cluster) may be indicated within a given
single cluster sharing map 754, whereas inter-cluster sharing
(i.e., sharing among cores in multiple different clusters) may
be indicated through multiple different cluster sharing maps,
each corresponding to a different cluster, each having the
same address, and each in the illustrated embodiment
included in the same set.

Accordingly, each of the four per-way selection logic
receives three inputs. Namely, each of the four per-way selec-
tion logic receives a corresponding way match signal corre-
sponding to the same way from the tag comparison logic, a
corresponding cluster ID field corresponding to the same way
from the tag array, and a corresponding cluster sharing map
corresponding to the same way from the cluster sharing map
array. Bach of the four per-way selection logic is operable to
select either the received/input cluster sharing map or a pre-
determined value that is operable to indicate no cores within
the cluster are sharing the data based on the received/input

US 9,424,191 B2

11

way match signal. For example, in a convention where a
binary value of 1 in the cluster sharing map indicates the
corresponding core is sharing data, the predetermined value
may have 8-bits cleared bits equal to binary 0 when there are
eight cores in the cluster. In some embodiments, when the
received/input way match signal indicates there is a match the
received/input cluster sharing map is selected, whereas when
the way match signal indicates there is no match the prede-
termined value indicating no cores are sharing the data is
selected.

Each of the four per-way selection logic has four outputs
872. Each of the four outputs from a given one of the four
per-way selection logic is coupled with an input of a different
corresponding one of four OR gates 874. The four OR gates
represent an embodiment of cluster sharing map alignment
and/or repositioning logic. The four outputs of the selection
logic corresponding to way|0] are each coupled with a difter-
ent one of the four OR gates, the four outputs of the selection
logic corresponding to way][1] are each coupled with a difter-
ent one of the four OR gates, and so on. Each of the selection
logics is operable to de-multiplex, route, or otherwise provide
the selected value (e.g., either the received/input cluster shar-
ing map or the predetermined value) to one of the four OR
gates based on the corresponding received/input cluster ID
field. In some embodiments, the cluster sharing maps for the
clusters are not placed in the tag array 856 in an order required
by their cluster IDs. For example, a cluster sharing map for a
first cluster and/or cluster ID may be placed in any of the ways
in the tag array. Such routing or moving of the selected values
may be used to rearrange the selected values (e.g., the cluster
sharing maps) to appropriate positions within the all-core
sharing map 806.

In some embodiments, each of the clusters corresponds to
a different fixed or predetermined position within the all-core
sharing map. For example, in the illustrated embodiment,
there are four clusters, there are four positions within the
all-core sharing map each operable to contain a different
cluster sharing map, and each of the clusters corresponds to a
different fixed or predetermined one of the four positions
within the all-core sharing map. For example, a first cluster
(e.g., identified by cluster ID 00) corresponds to the way[0]
position in the all-core sharing map, a second cluster (e.g.,
identified by cluster ID 01) corresponds to the way[1] posi-
tion in the all-core sharing map, a third cluster (e.g., identified
by cluster ID 10) corresponds to the way[2] position in the
all-core sharing map, and a fourth cluster (e.g., identified by
cluster ID 11) corresponds to the way|[3] position in the all-
core sharing map. This is just one possible example. Each of
the OR gates may output or provide the input they receive
from any of the four selection logic to a corresponding posi-
tion in the all-core sharing map 806. Accordingly, in some
embodiments, the cluster sharing map-based hardware coher-
ence directory includes cluster sharing map rearrangement or
routing logic to rearrange or route cluster sharing maps cor-
responding to different clusters into an arrangement suitable
for the all-core sharing map 806. Where there is inter-cluster
sharing, and multiple cluster sharing maps each correspond-
ing to the same address are stored within the same way, these
cluster sharing maps are routed or rearranged into the posi-
tions of the all-core sharing map appropriate for their corre-
sponding cluster. It is not required to use the particular selec-
tion logic and OR gates shown. Other embodiments may use
other configurations of selection and Boolean logic to per-
form the rearrangement. Still other embodiments may
include shifting and merging logic to perform the rearrange-
ment. In the above description a sequential lookup into the tag
and cluster sharing map arrays has been described, although

10

15

20

25

30

35

40

45

50

55

60

65

12

other embodiments may perform at least partially concurrent
tag and cluster sharing map array lookup.

Accordingly, as described above in conjunction with FIG.
8, a comparatively small amount of static storage for tracking
data sharing may be allocated. When the amount of sharing
increases beyond the static amount, the information to track
the additional sharing/sharers may be opportunistically
spilled into available or unused space in the directory that
results from the sharing. Advantageously, this may help to
avoid needing to statically allocate an amount of storage
space for the maximum possible amount of sharing, which is
generally not the common case for most applications. Reduc-
ing the total amount of storage needed for the directory may
help to reduce the size, manufacturing cost, and/or power
consumption for the directory. Moreover, this may also help
to provide continued support for the widely used shared
memory programming model, which is prevalent on many
Intel Architecture based processors, when the number of
cores or processors increases, which may help to allow exist-
ing applications to be run without change.

In some embodiments, rather than a single physical direc-
tory, a distributed directory may be utilized. For example, in
some embodiments, each core may have a corresponding
distributed “slice” or other portion of the directory. For
example, if there are thirty-two cores, there may be thirty-two
per-core slices of the directory each located proximate a
corresponding one of the cores (e.g., within a tile having the
core). In some embodiments, each slice and/or each core may
have a unique predefined address range. For example, if there
are thirty-two cores and/or slices, any given address may
uniquely map to one of the thirty-two cores and/or slices
referred to as a home slice for that given address. By way of
example, one way to implement this is to have each possible
value of the first five bits of the address uniquely correspond
to a different one of the thirty-two slices. For example, all
addresses with the first five bits 11111 may correspond to the
same slice. All other slices may have a different value for
these first five bits of the address. Alternatively, some embodi-
ments may choose to hash the address differently to derive a
home slice.

FIG. 9 is a graph plotting directory size as a percentage of
cache size as a function of number of cores for a conventional
all-core shared map-based hardware coherence directory
(e.g., per the approach shown in FIG. 2) and a cluster shared
map-based hardware coherence directory (e.g., per the
approach shown in FIG. 8). Directory size as a percentage of
cache size is plotted on the vertical axis. Number of cores is
plotted on the horizontal axis. As can be readily seen, espe-
cially when the number of cores is approximately thirty-two
or more, the conventional all-core shared map-based hard-
ware coherence directory tends to have a much higher per-
centage of directory size to cache size than the cluster shared
map-based hardware coherence directory. When there are
about 512 or more cores, the conventional all-core shared
map-based hardware coherence directory may consume as
much storage space as used for the actual cache. By contrast,
the cluster shared map-based hardware coherence directory
has a relatively flat dependency on increasing number of
cores beyond about thirty-two cores. This graph clearly
shows that the cluster shared map-based hardware coherence
directory is much more scalable than the conventional all-
core shared map-based hardware coherence directory. It is to
be appreciated that embodiments are applicable to even small
numbers of cores although as explained elsewhere herein
advantages of reduced directory storage space are especially
incurred for large core counts of at least sixteen or more.

US 9,424,191 B2

13

FIG. 10 is a block diagram of a first embodiment of hard-
ware coherence logic 1078 that includes a cluster sharing
map-based hardware coherence directory 1044 and an
optional small all-core sharing map-based hardware coher-
ence directory 1076 that are accessed in series. The cluster
sharing map-based directory may be similar to, or the same
as, those described elsewhere herein. In some embodiments,
the small all-core sharing map-based directory may be similar
to the known all-core sharing map-based directory 210 of
FIG. 2 except that it is relatively smaller (e.g., has fewer
entries). The features described above for the directory 210
are also relevant to the directory 1076. The small all-core
sharing map-based coherence directory may store corre-
sponding pairs of addresses and all-core sharing maps. In
various embodiments, the small all-core sharing map-based
directory may have no more than about 20, 15, or 10 entries
per core and/or slice. For example, in various embodiments,
the small all-core sharing map-based directory may have
about 1 to 20, about 2 to 20, about 4 to 15, or about 6 to 15
entries per core and/or slice. By contrast, the known all-core
sharing map-based directory 210 commonly includes many
more entries. For example, the number of entries may be
equal to the total number of possible cache lines. For instance,
if each private cache is 256 KB with 64-bit line size, each
directory slice may have around 4096 entries (i.e., 256%1024/
64).

In some embodiments, the all-core sharing map-based and
the cluster sharing map-based directories may track non-
overlapping or mutually exclusive sets of addresses. For
example, the small all-core sharing map-based directory may
store all-core sharing maps when the number of clusters shar-
ing data exceeds a threshold and/or exceeds the associativity
of the cluster sharing map-based directory. If a tag is to be
added to the cluster sharing map-based directory, but it would
result in the number oftags exceeding the threshold and/or the
associativity, then all tags for the corresponding address may
be marked as invalid in the cluster sharing map-based direc-
tory and an all-core sharing map indicating equivalent sharing
may be created and stored in the small all-core sharing map-
based directory.

The relatively small size of the small all-core sharing map-
based directory is appropriate for various different types of
data sharing patterns. One common data sharing patter is that
a relatively large degree of sharing of a relatively few number
of addresses (e.g., for semaphores). Active semaphores are
generally relatively few in number for a given application.
Consequently, a small number of entries in the small all-core
sharing map-based directory are generally sufficient for
semaphores. Another common data sharing pattern is that of
widely shared read only data for a large number of different
addresses. The wide sharing of the data generally signifi-
cantly reduces the number of distinct addresses. For example,
consider a 256 kilo byte private L2 cache/tile with 4096
entries (64-byte cache line size) for a 1024 core design. If all
lines are shared, then there are only 4096 distinct addresses.
Since there are 1024 cores and/or slices, there are only about
4 (i.e., 4096/1024) entries per core and/or slice. For other
numbers of cores, the number would be the number of distinct
addresses divided by the number of cores or slices. If desired,
more (e.g., between about 4 to 10) may optionally be included
(e.g., to help account for non-uniform address distribution
and/or one slice having a disproportionate amount of
addresses). Yet another common data sharing pattern is that of
random sharing among a few addresses. For random sharing
across a few cores, the cluster sharing map based hardware
coherence directories described elsewhere herein are should
suffice for inter-cluster sharing. Since these types of accesses

30

40

45

50

14

tend to be relatively few in number, the side-effects of these
can generally be ignored without significant performance
impact. Alternatively, a slightly larger cache may be included
to help mitigate the side-eftects of the few randomly shared
lines.

Accordingly, the number of entries generally tends to be
relatively small, such as no more than about twenty entries per
core or slice. There is no precise number that is required, but
rather there is flexibility in the actual number, although with
some performance versus area/power tradeoff. Generally,
relatively more entries per core or slice (although often no
more than about twenty) tends to provide relatively better
performance, but to have relatively larger area and larger
power consumption. Conversely, relatively fewer entries per
core or slice (although often at least 1-2), tends to provide
smaller area and smaller power consumption, but to have
relatively worse performance. Those skilled in the art will
appreciate that the actual number may be selected for the
particular implementation depending on factors such as the
number of cores, the sizes of the caches, the types of data
sharing patterns expected, the performance, area, and power
objectives, etc.

When selecting victims in the cluster sharing map-based
directory and/or the small all-core sharing map-based direc-
tory, conventional victim selection approaches known in the
arts may optionally be used. For example, in some embodi-
ments, a least recently used (LRU) approach may be used. If
desired, more sophisticated approaches may optionally be
used. For example, in addition to considering recent use (e.g.,
as in the case of LRU approaches), other factors such as the
number of sharers may optionally be considered. In some
embodiments, if there are multiple tags for an address of a
selected victim in the cluster sharing map-based directory, all
of these tags may optionally be invalidated and/or removed
from the cluster sharing map-based directory, and an all-core
sharing may optionally be added to the small all-core sharing
map-based directory.

Referring again to FIG. 10, in the illustrated first embodi-
ment, the cluster sharing map-based and small all-core shar-
ing map-based directories are shown to be accessed in series.
In particular, in the illustrated embodiment, the cluster shar-
ing map-based directory is shown to be accessed prior to the
small all-core sharing map-based directory. Commonly, the
cluster sharing map-based directory has a higher hit rate than
the small all-core sharing map-based directory and it is more
efficient to access the cluster sharing map-based directory
first. During use an address (e.g., from a directory controller)
may be used to perform a lookup in the cluster sharing map-
based directory. If the address is found to have one or more
matching tags in the cluster sharing map-based directory, then
an all-core sharing map 1006 may be regenerated from one or
more matching cluster sharing maps as described elsewhere
herein and output (e.g., written to an all-core sharing map
register accessible to the directory controller). Alternatively,
if there is a miss in the cluster sharing map-based directory,
the small all-core sharing map-based directory may be
accessed. As shown in the illustration, in some cases the
cluster sharing map-based directory may access the small
all-core sharing map-based directory. In other cases, the
directory controller may access the small all-core sharing
map-based directory. Ifthe tag is found to have a match in the
small all-core sharing map-based directory, then an intact
all-core sharing map 1006 stored in the small all-core sharing
map-based directory may be selected and output (e.g., written
to an all-core sharing map register). If desired, the directory
controller may optionally be informed of whether there is a hit
in the cluster sharing map-based directory and/or the small

US 9,424,191 B2

15

all-core sharing map-based directory. Such a serial lookup
generally tends to be more energy efficient, as compared to a
parallel lookup, and may be used to help reduce power con-
sumption.

FIG. 11 is a block diagram of a second embodiment of
hardware coherence logic 1178 that includes a cluster sharing
map-based hardware coherence directory 1144 and an
optional small all-core sharing map-based hardware coher-
ence directory 1176 that are accessed in parallel. During use
an address (e.g., from the directory controller) may be used to
concurrently perform a lookup in both the cluster sharing
map-based directory and the small all-core sharing map-
based directory. If the address is found to have one or more
matching tags in the cluster sharing map-based directory, then
an all-core sharing map 1106 may be regenerated from one or
more matching cluster sharing maps as described elsewhere
herein and output (e.g., written to an all-core sharing map
register). If the address is found to have a matching tag in the
small all-core sharing map-based directory, then an intact
all-core sharing map 1106 stored in the small all-core sharing
map-based directory may be selected and output (e.g., written
to an all-core sharing map register). In some cases, an
optional selection logic 1177 may be included to select
between the outputs. If desired, the directory controller may
optionally be informed of whether there is a hit in the cluster
sharing map-based directory and/or the small all-core sharing
map-based directory. Such a parallel lookup generally tends
to detect matches faster, as compared to a serial lookup, and
may be used to help increase performance.

Exemplary Core Architectures, Processors, and Computer
Architectures

Processor cores may be implemented in different ways, for
different purposes, and in different processors. For instance,
implementations of such cores may include: 1) a general
purpose in-order core intended for general-purpose comput-
ing; 2) a high performance general purpose out-of-order core
intended for general-purpose computing; 3) a special purpose
core intended primarily for graphics and/or scientific
(throughput) computing. Implementations of different pro-
cessors may include: 1) a CPU including one or more general
purpose in-order cores intended for general-purpose comput-
ing and/or one or more general purpose out-of-order cores
intended for general-purpose computing; and 2) a coproces-
sor including one or more special purpose cores intended
primarily for graphics and/or scientific (throughput). Such
different processors lead to different computer system archi-
tectures, which may include: 1) the coprocessor on a separate
chip from the CPU; 2) the coprocessor on a separate die in the
same package as a CPU; 3) the coprocessor on the same die as
a CPU (in which case, such a coprocessor is sometimes
referred to as special purpose logic, such as integrated graph-
ics and/or scientific (throughput) logic, or as special purpose
cores); and 4) a system on a chip that may include on the same
die the described CPU (sometimes referred to as the applica-
tion core(s) or application processor(s)), the above described
coprocessor, and additional functionality. Exemplary core
architectures are described next, followed by descriptions of
exemplary processors and computer architectures.
Exemplary Core Architectures
In-Order and Out-of-Order Core Block Diagram

FIG. 12A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out-of-
order issue/execution pipeline according to embodiments of
the invention. FIG. 12B is a block diagram illustrating both an
exemplary embodiment of an in-order architecture core and
an exemplary register renaming, out-of-order issue/execution
architecture core to be included in a processor according to

5

10

15

20

25

30

35

40

45

50

55

60

65

16

embodiments of the invention. The solid lined boxes in FIGS.
12A-B illustrate the in-order pipeline and in-order core, while
the optional addition of the dashed lined boxes illustrates the
register renaming, out-of-order issue/execution pipeline and
core. Given that the in-order aspect is a subset of the out-of-
order aspect, the out-of-order aspect will be described.

In FIG. 12A, a processor pipeline 1200 includes a fetch
stage 1202, a length decode stage 1204, a decode stage 1206,
an allocation stage 1208, a renaming stage 1210, a scheduling
(also known as a dispatch or issue) stage 1212, a register
read/memory read stage 1214, an execute stage 1216, a write
back/memory write stage 1218, an exception handling stage
1222, and a commit stage 1224.

FIG. 12B shows processor core 1290 including a front end
unit 1230 coupled to an execution engine unit 1250, and both
are coupled to a memory unit 1270. The core 1290 may be a
reduced instruction set computing (RISC) core, a complex
instruction set computing (CISC) core, a very long instruction
word (VLIW) core, or a hybrid or alternative core type. As yet
another option, the core 1290 may be a special-purpose core,
such as, for example, a network or communication core,
compression engine, coprocessor core, general purpose com-
puting graphics processing unit (GPGPU) core, graphics
core, or the like.

The front end unit 1230 includes a branch prediction unit
1232 coupled to an instruction cache unit 1234, which is
coupled to an instruction translation lookaside buffer (TLB)
1236, which is coupled to an instruction fetch unit 1238,
which is coupled to a decode unit 1240. The decode unit 1240
(or decoder) may decode instructions, and generate as an
output one or more micro-operations, micro-code entry
points, microinstructions, other instructions, or other control
signals, which are decoded from, or which otherwise reflect,
or are derived from, the original instructions. The decode unit
1240 may be implemented using various different mecha-
nisms. Examples of suitable mechanisms include, but are not
limited to, look-up tables, hardware implementations, pro-
grammable logic arrays (PLAs), microcode read only memo-
ries (ROMs), etc. In one embodiment, the core 1290 includes
a microcode ROM or other medium that stores microcode for
certain macroinstructions (e.g., in decode unit 1240 or other-
wise within the front end unit 1230). The decode unit 1240 is
coupled to a rename/allocator unit 1252 in the execution
engine unit 1250.

The execution engine unit 1250 includes the rename/allo-
cator unit 1252 coupled to a retirement unit 1254 and a set of
one or more scheduler unit(s) 1256. The scheduler unit(s)
1256 represents any number of different schedulers, includ-
ing reservations stations, central instruction window, etc. The
scheduler unit(s) 1256 is coupled to the physical register
file(s) unit(s) 1258. Each of the physical register file(s) units
1258 represents one or more physical register files, different
ones of which store one or more different data types, such as
scalar integer, scalar floating point, packed integer, packed
floating point, vector integer, vector floating point, status
(e.g., an instruction pointer that is the address of the next
instruction to be executed), etc. In one embodiment, the
physical register file(s) unit 1258 comprises a vector registers
unit, a write mask registers unit, and a scalar registers unit.
These register units may provide architectural vector regis-
ters, vector mask registers, and general purpose registers. The
physical register file(s) unit(s) 1258 is overlapped by the
retirement unit 1254 to illustrate various ways in which reg-
ister renaming and out-of-order execution may be imple-
mented (e.g., using a reorder buffer(s) and a retirement reg-
ister file(s); using a future file(s), a history buffer(s), and a
retirement register file(s); using a register maps and a pool of

US 9,424,191 B2

17

registers; etc.). The retirement unit 1254 and the physical
register file(s) unit(s) 1258 are coupled to the execution clus-
ter(s) 1260. The execution cluster(s) 1260 includes a set of
one or more execution units 1262 and a set of one or more
memory access units 1264. The execution units 1262 may
perform various operations (e.g., shifts, addition, subtraction,
multiplication) and on various types of data (e.g., scalar float-
ing point, packed integer, packed floating point, vector inte-
ger, vector floating point). While some embodiments may
include a number of execution units dedicated to specific
functions or sets of functions, other embodiments may
include only one execution unit or multiple execution units
that all perform all functions. The scheduler unit(s) 1256,
physical register file(s) unit(s) 1258, and execution cluster(s)
1260 are shown as being possibly plural because certain
embodiments create separate pipelines for certain types of
data/operations (e.g., a scalar integer pipeline, a scalar float-
ing point/packed integer/packed floating point/vector integer/
vector floating point pipeline, and/or a memory access pipe-
line that each have their own scheduler unit, physical register
file(s) unit, and/or execution cluster—and in the case of a
separate memory access pipeline, certain embodiments are
implemented in which only the execution cluster of this pipe-
line has the memory access unit(s) 1264). It should also be
understood that where separate pipelines are used, one or
more of these pipelines may be out-of-order issue/execution
and the rest in-order.

The set of memory access units 1264 is coupled to the
memory unit 1270, which includes a data TLB unit 1272
coupled to a data cache unit 1274 coupled to a level 2 (L2)
cache unit 1276. In one exemplary embodiment, the memory
access units 1264 may include a load unit, a store address unit,
and a store data unit, each of which is coupled to the data TL.B
unit 1272 in the memory unit 1270. The instruction cache unit
1234 is further coupled to a level 2 (L.2) cache unit 1276 in the
memory unit 1270. The L2 cache unit 1276 is coupled to one
or more other levels of cache and eventually to a main
memory.

By way of example, the exemplary register renaming, out-
of-order issue/execution core architecture may implement the
pipeline 1200 as follows: 1) the instruction fetch 1238 per-
forms the fetch and length decoding stages 1202 and 1204; 2)
the decode unit 1240 performs the decode stage 1206; 3) the
rename/allocator unit 1252 performs the allocation stage
1208 and renaming stage 1210; 4) the scheduler unit(s) 1256
performs the schedule stage 1212; 5) the physical register
file(s) unit(s) 1258 and the memory unit 1270 perform the
register read/memory read stage 1214; the execution cluster
1260 perform the execute stage 1216; 6) the memory unit
1270 and the physical register file(s) unit(s) 1258 perform the
write back/memory write stage 1218; 7) various units may be
involved in the exception handling stage 1222; and 8) the
retirement unit 1254 and the physical register file(s) unit(s)
1258 perform the commit stage 1224.

The core 1290 may support one or more instructions sets
(e.g., the x86 instruction set (with some extensions that have
been added with newer versions); the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif.; the ARM instruc-
tion set (with optional additional extensions such as NEON)
of ARM Holdings of Sunnyvale, Calif.), including the
instruction(s) described herein. In one embodiment, the core
1290 includes logic to support a packed data instruction set
extension (e.g., AVX1, AVX?2), thereby allowing the opera-
tions used by many multimedia applications to be performed
using packed data.

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations

10

15

20

25

30

35

40

45

50

55

60

65

18

orthreads), and may do so in a variety of ways including time
sliced multithreading, simultaneous multithreading (where a
single physical core provides a logical core for each of the
threads that physical core is simultaneously multithreading),
or a combination thereof (e.g., time sliced fetching and
decoding and simultaneous multithreading thereafter such as
in the Intel® Hyperthreading technology).

While register renaming is described in the context of
out-of-order execution, it should be understood that register
renaming may be used in an in-order architecture. While the
illustrated embodiment of the processor also includes sepa-
rate instruction and data cache units 1234/1274 and a shared
L2 cache unit 1276, alternative embodiments may have a
single internal cache for both instructions and data, such as,
for example, a Level 1 (I.1) internal cache, or multiple levels
of internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that is external to the core and/or the processor. Alter-
natively, all of the cache may be external to the core and/or the
processor.

Specific Exemplary In-Order Core Architecture

FIGS. 13A-B illustrate a block diagram of a more specific
exemplary in-order core architecture, which core would be
one of several logic blocks (including other cores of the same
type and/or different types) in a chip. The logic blocks com-
municate through a high-bandwidth interconnect network
(e.g., aring network) with some fixed function logic, memory
1/O interfaces, and other necessary /O logic, depending on
the application.

FIG. 13A is a block diagram of a single processor core,
along with its connection to the on-die interconnect network
1302 and with its local subset of the Level 2 (1.2) cache 1304,
according to embodiments of the invention. In one embodi-
ment, an instruction decoder 1300 supports the x86 instruc-
tion set with a packed data instruction set extension. An L1
cache 1306 allows low-latency accesses to cache memory
into the scalar and vector units. While in one embodiment (to
simplify the design), a scalar unit 1308 and a vector unit 1310
use separate register sets (respectively, scalar registers 1312
and vector registers 1314) and data transferred between them
is written to memory and then read back in from alevel 1 (L1)
cache 1306, alternative embodiments of the invention may
use a different approach (e.g., use a single register set or
include a communication path that allow data to be trans-
ferred between the two register files without being written and
read back).

The local subset of the 1.2 cache 1304 is part of a global 1.2
cache that is divided into separate local subsets, one per
processor core. Each processor core has a direct access path to
its own local subset of the L2 cache 1304. Data read by a
processor core is stored in its [.2 cache subset 1304 and can be
accessed quickly, in parallel with other processor cores
accessing their own local L2 cache subsets. Data written by a
processor core is stored in its own .2 cache subset 1304 and
is flushed from other subsets, if necessary. The ring network
ensures coherency for shared data. The ring network is bi-
directional to allow agents such as processor cores, 1.2 caches
and other logic blocks to communicate with each other within
the chip. Each ring data-path is 1012-bits wide per direction.

FIG. 13B is an expanded view of part of the processor core
in FIG. 13 A according to embodiments of the invention. FIG.
13B includes an [.1 data cache 1306A part of the [.1 cache
1304, as well as more detail regarding the vector unit 1310
and the vector registers 1314. Specifically, the vector unit
1310 is a 16-wide vector processing unit (VPU) (see the
16-wide ALLU 1328), which executes one or more of integer,
single-precision float, and double-precision float instruc-

US 9,424,191 B2

19

tions. The VPU supports swizzling the register inputs with
swizzle unit 1320, numeric conversion with numeric convert
units 1322A-B, and replication with replication unit 1324 on
the memory input. Write mask registers 1326 allow predicat-
ing resulting vector writes.

Processor with Integrated Memory Controller and Graphics

FIG. 14 is a block diagram of a processor 1400 that may
have more than one core, may have an integrated memory
controller, and may have integrated graphics according to
embodiments of the invention. The solid lined boxes in FIG.
14 illustrate a processor 1400 with a single core 1402A, a
system agent 1410, a set of one or more bus controller units
1416, while the optional addition of the dashed lined boxes
illustrates an alternative processor 1400 with multiple cores
1402A-N, a set of one or more integrated memory controller
unit(s) 1414 in the system agent unit 1410, and special pur-
pose logic 1408.

Thus, different implementations of the processor 1400 may
include: 1) a CPU with the special purpose logic 1408 being
integrated graphics and/or scientific (throughput) logic
(which may include one or more cores), and the cores
1402A-N being one or more general purpose cores (e.g.,
general purpose in-order cores, general purpose out-of-order
cores, a combination of the two); 2) a coprocessor with the
cores 1402A-N being a large number of special purpose cores
intended primarily for graphics and/or scientific (through-
put); and 3) a coprocessor with the cores 1402A-N being a
large number of general purpose in-order cores. Thus, the
processor 1400 may be a general-purpose processor, copro-
cessor or special-purpose processor, such as, for example, a
network or communication processor, compression engine,
graphics processor, GPGPU (general purpose graphics pro-
cessing unit), a high-throughput many integrated core (MIC)
coprocessor (including 30 or more cores), embedded proces-
sor, or the like. The processor may be implemented on one or
more chips. The processor 1400 may be a part of and/or may
be implemented on one or more substrates using any of a
number of process technologies, such as, for example, BiC-
MOS, CMOS, or NMOS.

The memory hierarchy includes one or more levels of
cache within the cores, a set or one or more shared cache units
1406, and external memory (not shown) coupled to the set of
integrated memory controller units 1414. The set of shared
cache units 1406 may include one or more mid-level caches,
such as level 2 (1.2), level 3 (L3), level 4 (1.4), or other levels
of cache, a last level cache (LLC), and/or combinations
thereof. While in one embodiment a ring based interconnect
unit 1412 interconnects the integrated graphics logic 1408,
the set of shared cache units 1406, and the system agent unit
1410/integrated memory controller unit(s) 1414, alternative
embodiments may use any number of well-known techniques
for interconnecting such units. In one embodiment, coher-
ency is maintained between one or more cache units 1406 and
cores 1402-A-N.

In some embodiments, one or more of the cores 1402A-N
are capable of multi-threading. The system agent 1410
includes those components coordinating and operating cores
1402A-N. The system agent unit 1410 may include for
example a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the cores 1402A-N and the
integrated graphics logic 1408. The display unit is for driving
one or more externally connected displays.

The cores 1402 A-N may be homogenous or heterogeneous
in terms of architecture instruction set; that is, two or more of
the cores 1402A-N may be capable of execution the same

25

30

40

45

55

20

instruction set, while others may be capable of executing only
a subset of that instruction set or a different instruction set.
Exemplary Computer Architectures

FIGS. 15-18 are block diagrams of exemplary computer
architectures. Other system designs and configurations
known in the arts for laptops, desktops, handheld PCs, per-
sonal digital assistants, engineering workstations, servers,
network devices, network hubs, switches, embedded proces-
sors, digital signal processors (DSPs), graphics devices,
video game devices, set-top boxes, micro controllers, cell
phones, portable media players, hand held devices, and vari-
ous other electronic devices, are also suitable. In general, a
huge variety of systems or electronic devices capable of
incorporating a processor and/or other execution logic as
disclosed herein are generally suitable.

Referring now to FIG. 15, shown is a block diagram of a
system 1500 in accordance with one embodiment of the
present invention. The system 1500 may include one or more
processors 1510, 1515, which are coupled to a controller hub
1520. In one embodiment the controller hub 1520 includes a
graphics memory controller hub (GMCH) 1590 and an Input/
Output Hub (IOH) 1550 (which may be on separate chips);
the GMCH 1590 includes memory and graphics controllers to
which are coupled memory 1540 and a coprocessor 1545; the
IOH 1550 is couples input/output (/O) devices 1560 to the
GMCH 1590. Alternatively, one or both of the memory and
graphics controllers are integrated within the processor (as
described herein), the memory 1540 and the coprocessor
1545 are coupled directly to the processor 1510, and the
controller hub 1520 in a single chip with the IOH 1550.

The optional nature of additional processors 1515 is
denoted in FIG. 15 with broken lines. Each processor 1510,
1515 may include one or more of the processing cores
described herein and may be some version of the processor
1400.

The memory 1540 may be, for example, dynamic random
access memory (DRAM), phase change memory (PCM), or a
combination of the two. For at least one embodiment, the
controller hub 1520 communicates with the processor(s)
1510, 1515 via a multi-drop bus, such as a frontside bus
(FSB), point-to-point interface such as QuickPath Intercon-
nect (QPI), or similar connection 1595.

In one embodiment, the coprocessor 1545 is a special-
purpose processor, such as, for example, a high-throughput
MIC processor, a network or communication processor, com-
pression engine, graphics processor, GPGPU, embedded pro-
cessor, or the like. In one embodiment, controller hub 1520
may include an integrated graphics accelerator.

There can be a variety of differences between the physical
resources 1510, 1515 in terms of a spectrum of metrics of
merit including architectural, microarchitectural, thermal,
power consumption characteristics, and the like.

In one embodiment, the processor 1510 executes instruc-
tions that control data processing operations of a general type.
Embedded within the instructions may be coprocessor
instructions. The processor 1510 recognizes these coproces-
sor instructions as being of a type that should be executed by
the attached coprocessor 1545. Accordingly, the processor
1510 issues these coprocessor instructions (or control signals
representing coprocessor instructions) on a coprocessor bus
or other interconnect, to coprocessor 1545. Coprocessor(s)
1545 accept and execute the received coprocessor instruc-
tions.

Referring now to FIG. 16, shown is a block diagram of a
first more specific exemplary system 1600 in accordance with
anembodiment of the present invention. As shown in FIG. 16,
multiprocessor system 1600 is a point-to-point interconnect

US 9,424,191 B2

21

system, and includes a first processor 1670 and a second
processor 1680 coupled via a point-to-point interconnect
1650. Each of processors 1670 and 1680 may be some version
of the processor 1400. In one embodiment of the invention,
processors 1670 and 1680 are respectively processors 1510
and 1515, while coprocessor 1638 is coprocessor 1545. In
another embodiment, processors 1670 and 1680 are respec-
tively processor 1510 coprocessor 1545.

Processors 1670 and 1680 are shown including integrated
memory controller (IMC) units 1672 and 1682, respectively.
Processor 1670 also includes as part of'its bus controller units
point-to-point (P-P) interfaces 1676 and 1678; similarly, sec-
ond processor 1680 includes P-P interfaces 1686 and 1688.
Processors 1670, 1680 may exchange information via a point-
to-point (P-P) interface 1650 using P-P interface circuits
1678, 1688. As shown in FIG. 16, IMCs 1672 and 1682
couple the processors to respective memories, namely a
memory 1632 and a memory 1634, which may be portions of
main memory locally attached to the respective processors.

Processors 1670, 1680 may each exchange information
with a chipset 1690 via individual P-P interfaces 1652, 1654
using point to point interface circuits 1676, 1694, 1686, 1698.
Chipset 1690 may optionally exchange information with the
coprocessor 1638 via a high-performance interface 1639. In
one embodiment, the coprocessor 1638 is a special-purpose
processor, such as, for example, a high-throughput MIC pro-
cessor, a network or communication processor, compression
engine, graphics processor, GPGPU, embedded processor, or
the like.

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 1690 may be coupled to a first bus 1616 via an
interface 1696. In one embodiment, first bus 1616 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O inter-
connect bus, although the scope of the present invention is not
so limited.

As shown in FIG. 16, various /O devices 1614 may be
coupled to first bus 1616, along with a bus bridge 1618 which
couples first bus 1616 to a second bus 1620. In one embodi-
ment, one or more additional processor(s) 1615, such as
coprocessors, high-throughput MIC processors, GPGPU’s,
accelerators (such as, e.g., graphics accelerators or digital
signal processing (DSP) units), field programmable gate
arrays, or any other processor, are coupled to first bus 1616. In
one embodiment, second bus 1620 may be a low pin count
(LPC) bus. Various devices may be coupled to a second bus
1620 including, for example, a keyboard and/or mouse 1622,
communication devices 1627 and a storage unit 1628 such as
a disk drive or other mass storage device which may include
instructions/code and data 1630, in one embodiment. Further,
an audio I/0 1624 may be coupled to the second bus 1620.
Note that other architectures are possible. For example,
instead of the point-to-point architecture of F1G. 16, a system
may implement a multi-drop bus or other such architecture.

Referring now to FIG. 17, shown is a block diagram of a
second more specific exemplary system 1700 in accordance
with an embodiment of the present invention. Like elements
in FIGS. 16 and 17 bear like reference numerals, and certain
aspects of FIG. 16 have been omitted from FIG. 17 in order to
avoid obscuring other aspects of FIG. 17.

FIG. 17 illustrates that the processors 1670, 1680 may
include integrated memory and I/O control logic (“CL”") 1672
and 1682, respectively. Thus, the CL 1672, 1682 include

10

15

20

25

30

35

40

45

50

55

60

65

22

integrated memory controller units and include I/O control
logic. FIG. 17 illustrates that not only are the memories 1632,
1634 coupled to the CL 1672, 1682, but also that I/O devices
1714 are also coupled to the control logic 1672,1682. Legacy
1/0 devices 1715 are coupled to the chipset 1690.

Referring now to FIG. 18, shown is a block diagram of a
SoC 1800 in accordance with an embodiment of the present
invention. Similar elements in FIG. 14 bear like reference
numerals. Also, dashed lined boxes are optional features on
more advanced SoCs. In FIG. 18, an interconnect unit(s) 1802
is coupled to: an application processor 1810 which includes a
set of one or more cores 202A-N and shared cache unit(s)
1406; a system agent unit 1410; a bus controller unit(s) 1416;
an integrated memory controller unit(s) 1414; a set or one or
more coprocessors 1820 which may include integrated graph-
ics logic, an image processor, an audio processor, and a video
processor; an static random access memory (SRAM) unit
1830; a direct memory access (DMA) unit 1832; and a display
unit 1840 for coupling to one or more external displays. Inone
embodiment, the coprocessor(s) 1820 include a special-pur-
pose processor, such as, for example, a network or commu-
nication processor, compression engine, GPGPU, a high-
throughput MIC processor, embedded processor, or the like.

Embodiments of the mechanisms disclosed herein may be
implemented in hardware, software, firmware, or a combina-
tion of such implementation approaches. Embodiments of the
invention may be implemented as computer programs or pro-
gram code executing on programmable systems comprising
at least one processor, a storage system (including volatile
and non-volatile memory and/or storage elements), at least
one input device, and at least one output device.

Program code, such as code 1630 illustrated in FIG. 16,
may be applied to input instructions to perform the functions
described herein and generate output information. The output
information may be applied to one or more output devices, in
known fashion. For purposes of this application, a processing
system includes any system that has a processor, such as, for
example; a digital signal processor (DSP), a microcontroller,
an application specific integrated circuit (ASIC), or a micro-
processor.

The program code may be implemented in a high level
procedural or object oriented programming language to com-
municate with a processing system. The program code may
also be implemented in assembly or machine language, if
desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

One or more aspects of at least one embodiment may be
implemented by representative instructions stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the logic
O Processor.

Such machine-readable storage media may include, with-
out limitation, non-transitory, tangible arrangements of
articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type of
disk including floppy disks, optical disks, compact disk read-
only memories (CD-ROMs), compact disk rewritable’s (CD-
RWs), and magneto-optical disks, semiconductor devices
such as read-only memories (ROMs), random access memo-
ries (RAMs) such as dynamic random access memories

US 9,424,191 B2

23

(DRAMs), static random access memories (SRAMs), eras-
able programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only
memories (EEPROMs), phase change memory (PCM), mag-
netic or optical cards, or any other type of media suitable for
storing electronic instructions.

Accordingly, embodiments of the invention also include
non-transitory, tangible machine-readable media containing
instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, cir-
cuits, apparatuses, processors and/or system features
described herein. Such embodiments may also be referred to
as program products.

Emulation (Including Binary Translation, Code Morphing,
Etc.)

In some cases, an instruction converter may be used to
convert an instruction from a source instruction set to a target
instruction set. For example, the instruction converter may
translate (e.g., using static binary translation, dynamic binary
translation including dynamic compilation), morph, emulate,
or otherwise convert an instruction to one or more other
instructions to be processed by the core. The instruction con-
verter may be implemented in software, hardware, firmware,
ora combination thereof. The instruction converter may be on
processor, off processor, or part on and part off processor.

FIG. 19 is a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a source
instruction set to binary instructions in a target instruction set
according to embodiments of the invention. In the illustrated
embodiment, the instruction converter is a software instruc-
tion converter, although alternatively the instruction con-
verter may be implemented in software, firmware, hardware,
or various combinations thereof. FIG. 19 shows a program in
a high level language 1902 may be compiled using an x86
compiler 1904 to generate x86 binary code 1906 that may be
natively executed by a processor with at least one x86 instruc-
tion set core 1916. The processor with at least one x86 instruc-
tion set core 1916 represents any processor that can perform
substantially the same functions as an Intel processor with at
least one x86 instruction set core by compatibly executing or
otherwise processing (1) a substantial portion of the instruc-
tion set of the Intel x86 instruction set core or (2) object code
versions of applications or other software targeted to run on
an Intel processor with at least one x86 instruction set core, in
order to achieve substantially the same result as an Intel
processor with at least one x86 instruction set core. The x86
compiler 1904 represents a compiler that is operable to gen-
erate x86 binary code 1906 (e.g., object code) that can, with or
without additional linkage processing, be executed on the
processor with at least one x86 instruction set core 1916.
Similarly, FIG. 19 shows the program in the high level lan-
guage 1902 may be compiled using an alternative instruction
set compiler 1908 to generate alternative instruction set
binary code 1910 that may be natively executed by a proces-
sor without at least one x86 instruction set core 1914 (e.g., a
processor with cores that execute the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif. and/or that execute
the ARM instruction set of ARM Holdings of Sunnyvale,
Calif.). The instruction converter 1912 is used to convert the
x86 binary code 1906 into code that may be natively executed
by the processor without an x86 instruction set core 1914.
This converted code is not likely to be the same as the alter-
native instruction set binary code 1910 because an instruction
converter capable of this is difficult to make; however, the
converted code will accomplish the general operation and be
made up of instructions from the alternative instruction set.
Thus, the instruction converter 1912 represents software,

15

20

25

30

40

45

50

24

firmware, hardware, or a combination thereof that, through
emulation, simulation or any other process, allows a proces-
sor or other electronic device that does not have an x86
instruction set processor or core to execute the x86 binary
code 1906.

In the description and claims, the terms “coupled” and
“connected,” along with their derivatives, may be used. It
should be understood that these terms are not intended as
synonyms for each other. Rather, in particular embodiments,
“connected” may be used to indicate that two or more ele-
ments are in direct physical or electrical contact with each
other. “Coupled” may mean that two or more elements are in
direct physical or electrical contact. However, “coupled” may
also mean that two or more elements are not in direct contact
with each other, but yet still co-operate or interact with each
other.

In the description above, for the purposes of explanation,
numerous specific details have been set forth in order to
provide a thorough understanding of the embodiments of the
invention. It will be apparent however, to one skilled in the art,
that one or more other embodiments may be practiced with-
out some of these specific details. The particular embodi-
ments described are not provided to limit the invention but to
illustrate it. The scope of the invention is not to be determined
by the specific examples provided above but only by the
claims below. In other instances, well-known circuits, struc-
tures, devices, and operations have been shown in block dia-
gram form or without detail in order to avoid obscuring the
understanding of the description.

It will also be appreciated, by one skilled in the art, that
modifications may be made to the embodiments disclosed
herein, such as, for example, to the sizes, configurations,
functions, and manner of operation, and use, of the compo-
nents of the embodiments. All equivalent relationships to
those illustrated in the drawings and described in the specifi-
cation are encompassed within embodiments of the inven-
tion. Where considered appropriate, reference numerals or
terminal portions of reference numerals have been repeated
among the figures to indicate corresponding or analogous
elements, which may optionally have similar characteristics.

Various operations and methods have been described.
Some of the methods have been described in a basic form in
the flow diagrams, but operations may optionally be added to
and/or removed from the methods. In addition, while the flow
diagrams show a particular order of the operations according
to example embodiments, it is to be understood that that
particular order is exemplary. Alternate embodiments may
optionally perform the operations in different order, combine
certain operations, overlap certain operations, etc. Many
modifications and adaptations may be made to the methods
and are contemplated.

It should also be appreciated that reference throughout this
specification to “one embodiment”, “an embodiment”, or
“one or more embodiments”, for example, means that a par-
ticular feature may be included in the practice of the inven-
tion. Similarly, it should be appreciated that in the description
various features are sometimes grouped together in a single
embodiment, Figure, or description thereof for the purpose of
streamlining the disclosure and aiding in the understanding of
various inventive aspects. This method of disclosure, how-
ever, is not to be interpreted as reflecting an intention that the
invention requires more features than are expressly recited in
each claim. Rather, as the following claims reflect, inventive
aspects may lie in less than all features of a single disclosed
embodiment. Thus, the claims following the Detailed
Description are hereby expressly incorporated into this

US 9,424,191 B2

25

Detailed Description, with each claim standing on its own as
a separate embodiment of the invention.

The following clauses and/or examples pertain to further
embodiments. Specifics in the clauses and/or examples may
be used anywhere in one or more embodiments.

In one embodiment, a first apparatus includes a plurality of
cores. The plurality of cores are logically grouped into a
plurality of clusters. A cluster sharing map-based coherence
directory is coupled with the plurality of cores and is to track
sharing of data among the plurality of cores. The cluster
sharing map-based coherence directory includes a tag array to
store corresponding pairs of addresses and cluster identifiers.
Each of the addresses is to identify data. Each of the cluster
identifiers is to identify one of the clusters. The cluster sharing
map-based coherence directory also includes a cluster shar-
ing map array to store cluster sharing maps. Each of the
cluster sharing maps corresponds to one of the pairs of
addresses and cluster identifiers. Each of the cluster sharing
maps is to indicate intra-cluster sharing of data identified by
the corresponding address within a cluster identified by the
corresponding cluster identifier.

Embodiments include the first apparatus in which the clus-
ters logically group non-overlapping sets of cores of equal
size.

Embodiments include any of the above first apparatus in
which a pair of an address and a cluster identifier are to be
stored in a given set and a given way of the tag array, and in
which a cluster sharing map corresponding to the pair is to be
stored in a corresponding set and a corresponding way of the
cluster sharing map array.

Embodiments include any of the above first apparatus fur-
ther including logic to indicate inter-cluster sharing of a given
data identified by a given address between a first cluster and
a second cluster. The logic does this by storing both a first
cluster identifier to identify the first cluster, and a second
cluster identifier to identify the second cluster, in different
ways of a same set of the tag array. The logic does this also by
storing both a first cluster sharing map to indicate intra-
cluster sharing of the given data within the first cluster, and a
second cluster sharing map to indicate intra-cluster sharing of
the given data within the second cluster, in different ways of
a same set of the cluster sharing map array.

Embodiments include any of the above first apparatus fur-
ther including logic to generate an all-core sharing map from
a plurality of cluster sharing maps, each corresponding to a
given address, and each corresponding to a different cluster
identifier. The logic does this by rearranging the plurality of
cluster sharing maps, from positions where they are stored in
the cluster sharing map array, to positions in the all-core
sharing map, based on the different corresponding cluster
identifiers.

Embodiments include any of the above first apparatus fur-
ther including tag comparison logic coupled with the tag
array. The tag comparison logic is to compare a plurality of
addresses in different ways of a same set of the tag array, and
to provide a plurality of per-way match signals to indicate
whether or not the addresses in the different ways match.

Embodiments include any of the above first apparatus fur-
ther including a small all-core sharing map-based coherence
directory having no more than twenty entries per core of the
plurality of cores. The small all-core sharing map-based
coherence directory is to store corresponding pairs of
addresses and all-core sharing maps. Each of the all-core
sharing maps is to indicate sharing of data identified by a
corresponding address within the plurality of cores.

25

40

45

26

Embodiments include any of the above first apparatus in
which the small all-core sharing map-based coherence direc-
tory has no more than fifteen entries per core of the plurality
of cores.

Embodiments include any of the above first apparatus in
which the cluster sharing map-based coherence directory, and
the small all-core sharing map-based coherence directory, are
coupled to be accessed in parallel.

Embodiments include any of the above first apparatus in
which the cluster sharing map-based coherence directory, and
the small all-core sharing map-based coherence directory, are
coupled to be accessed in series.

Embodiments include any of the above first apparatus in
which the cores comprise at least thirty-two cores.

Embodiments include any of the above first apparatus in
which the cores comprise at least one hundred cores.

In one embodiment, a first method includes storing corre-
sponding pairs of addresses and cluster identifiers in a tag
array of a cluster sharing map-based coherence directory.
Each of the addresses is to identify data. Each of the cluster
identifiers is to identify one of the clusters. The clusters logi-
cally group a plurality of cores. The first method also includes
storing cluster sharing maps in a cluster sharing map array of
the cluster sharing map-based coherence directory. Each of
the cluster sharing maps corresponds to one of the pairs of
addresses and cluster identifiers. Each of the cluster sharing
maps is to indicate intra-cluster sharing of data identified by
the corresponding address within a cluster identified by the
corresponding cluster identifier. The first method also
includes determining inter-cluster sharing of data corre-
sponding to a given address by accessing from the cluster
sharing map-based coherency directory a plurality of cluster
sharing maps each corresponding to the given address and
each having a different cluster identifier.

Embodiments include the above first method further com-
prising logically grouping the cores into the clusters, in which
logically grouping comprises logically grouping at least one
hundred cores into the plurality of clusters.

Embodiments include any of the above first methods fur-
ther including indicating inter-cluster sharing of a given data
identified by a given address between a first cluster and a
second cluster by storing both a first cluster identifier to
identify the first cluster, and a second cluster identifier to
identify the second cluster, in different ways of a same set of
the tag array. Also, storing both a first cluster sharing map to
indicate intra-cluster sharing of the given data within the first
cluster, and a second cluster sharing map to indicate intra-
cluster sharing of the given data within the second cluster, in
different corresponding ways of a same set of the cluster
sharing map array.

Embodiments include any of the above first methods fur-
ther including generating an all-core sharing map from a
plurality of cluster sharing maps, each corresponding to a
given address, and each corresponding to a different cluster
identifier.

Embodiments include the above first method in which
generating the all-core sharing map comprises rearranging
the plurality of cluster sharing maps, from positions where
they are stored in the cluster sharing map array, to positions in
the all-core sharing map, based on the different correspond-
ing cluster identifiers.

Embodiments include any of the above first methods fur-
ther including comparing a plurality of addresses in a plural-
ity of different ways of a set of the tag array with a reference
address and indicating which of multiple addresses match the
reference address.

US 9,424,191 B2

27

Embodiments include any of the above first methods fur-
ther comprising logically grouping the cores into the clusters,
in which logically grouping the cores into the clusters com-
prises logically grouping the cores into clusters of non-over-
lapping sets of cores of equal size.

Embodiments include any of the above first methods fur-
ther including accessing a small all-core sharing map-based
coherence directory having no more than twenty entries per
core. The small all-core sharing map-based coherence direc-
tory stores corresponding pairs of addresses and all-core shar-
ing maps. Each of the all-core sharing maps is to indicate
sharing of data identified by a corresponding address by any
of the plurality of cores.

Embodiments include the above first method further
including accessing the cluster sharing map-based coherence
directory in parallel with accessing the small all-core sharing
map-based coherence directory.

Embodiments include either of the two above first methods
further including accessing the cluster sharing map-based
coherence directory in series with accessing the small all-core
sharing map-based coherence directory.

Embodiments include either of the three above first meth-
ods in which accessing comprises accessing a small all-core
sharing map-based coherence directory that has no more than
fifteen entries per core.

In one embodiment, a first system includes a multi-core
apparatus. The multi-core apparatus includes a plurality of
cores. The plurality of cores are logically grouped into a
plurality of clusters. The multi-core apparatus also includes a
memory controller coupled with a first core of the plurality.
The multi-core apparatus also includes a cluster sharing map-
based coherence directory coupled with the plurality of cores
to track sharing of data among the plurality of cores. The
cluster sharing map-based coherence directory includes a tag
array to store corresponding pairs of addresses and cluster
identifiers, each of the addresses to identify data, each of the
cluster identifiers to identify one of the clusters. The cluster
sharing map-based coherence directory also includes a clus-
ter sharing map array to store cluster sharing maps, each ofthe
cluster sharing maps corresponding to one of the pairs of
addresses and cluster identifiers, each of the cluster sharing
maps to indicate intra-cluster sharing of data identified by the
corresponding address within a cluster identified by the cor-
responding cluster identifier. The first system also includes a
memory coupled with the memory controller. The memory
comprises a dynamic random access memory (DRAM).

Embodiments include the above first system further
including logic to indicate inter-cluster sharing of'a given data
identified by a given address between a first cluster and a
second cluster. The logic does this by storing both a first
cluster identifier to identify the first cluster, and a second
cluster identifier to identify the second cluster, in different
ways of a same set of the tag array. The logic is also to store
both a first cluster sharing map to indicate intra-cluster shar-
ing of the given data within the first cluster, and a second
cluster sharing map to indicate intra-cluster sharing of the
given data within the second cluster, in different ways of a
same set of the cluster sharing map array.

Embodiments include any of the above first systems further
including logic to generate an all-core sharing map from a
plurality of cluster sharing maps, each corresponding to a
given address, and each corresponding to a different cluster
identifier. The logic is to rearrange the plurality of cluster
sharing maps, from positions where they are stored in the
cluster sharing map array, to positions in the all-core sharing
map, based on the different corresponding cluster identifiers.

25

30

40

45

28

Inone embodiment, a second apparatus includes a plurality
of cores. The plurality of cores are logically grouped into a
plurality of clusters. A first means is coupled with the plural-
ity of cores and is for tracking sharing of data among the
plurality of cores. The first means includes a second means for
storing corresponding pairs of addresses and cluster identifi-
ers. Each of the addresses is to identify data. Each of the
cluster identifiers is to identify one of the clusters. The first
means also includes a second means for storing cluster shar-
ing maps. Each of the cluster sharing maps corresponds to one
of the pairs of addresses and cluster identifiers. Each of the
cluster sharing maps is to indicate intra-cluster sharing of data
identified by the corresponding address within a cluster iden-
tified by the corresponding cluster identifier.

In one embodiment, an apparatus is configured and/or
operable to perform any of the methods disclosed herein.

What is claimed is:

1. An apparatus comprising:

a plurality of cores, the plurality of cores logically grouped
into a plurality of clusters; and

a cluster sharing map-based coherence directory coupled
with the plurality of cores configured to track sharing of
data among the plurality of cores, the cluster sharing
map-based coherence directory including:

a tag array configured to store corresponding pairs of
addresses and cluster identifiers in multiple sets and
ways, each of the addresses configured to identify data,
each of the cluster identifiers having a plurality of bits
configured to identify only a single one of the clusters,
wherein each address corresponds to only a single clus-
ter identifier; and a cluster sharing map array configured
to store cluster sharing maps, each of the cluster sharing
maps corresponding to one of the pairs of addresses and
cluster identifiers in a corresponding way of the tag
array, each of the cluster sharing maps configured to
indicate intra-cluster sharing of data identified by the
corresponding address within a cluster identified by the
plurality of bits of the corresponding cluster identifier.

2. The apparatus of claim 1, wherein the clusters logically
group non-overlapping sets of cores of equal size.

3. The apparatus of claim 1, wherein a pair of an address
and a cluster identifier are to be stored in a given set and a
given way of the tag array, and wherein a cluster sharing map
corresponding to the pair is to be stored in a corresponding set
and a corresponding way of the cluster sharing map array.

4. The apparatus of claim 1, further comprising logic con-
figured to indicate inter-cluster sharing of a given data iden-
tified by a given address between a first cluster and a second
cluster by storing both a first cluster identifier configured to
identify the first cluster and a second cluster identifier con-
figured to identity the second cluster in different ways of a
same set of the tag array, and by storing both a first cluster
sharing map configured to indicate intra-cluster sharing of the
given data within the first cluster and a second cluster sharing
map configured to indicate intra-cluster sharing of the given
data within the second cluster in different ways of a same set
of the cluster sharing map array.

5. The apparatus of claim 1, further comprising logic con-
figured to generate an all-core sharing map from a plurality of
cluster sharing maps each corresponding to a given address
and each corresponding to a different cluster identifier, by
rearranging the plurality of cluster sharing maps, from posi-
tions where they are stored in the cluster sharing map array to
positions in the all-core sharing map, based on the different
corresponding cluster identifiers.

6. The apparatus of claim 1, further comprising tag com-
parison logic coupled with the tag array, the tag comparison

US 9,424,191 B2

29

logic configured to compare a plurality of addresses in dif-
ferent ways of a same set of the tag array and to provide a
plurality of per-way match signals to indicate whether or not
the addresses in the different ways match.

7. The apparatus of claim 1, further comprising a small
all-core sharing map-based coherence directory having no
more than twenty entries per core of the plurality of cores, the
small all-core sharing map-based coherence directory config-
ured to store corresponding pairs of addresses and all- core
sharing maps, each of the all-core sharing maps configured to
indicate sharing of data identified by a corresponding address
within the plurality of cores.

8. The apparatus of claim 7, wherein the small all-core
sharing map-based coherence directory has no more than
fifteen entries per core of the plurality of cores.

9. The apparatus of claim 7, wherein the cluster sharing
map-based coherence directory and the small all-core sharing
map-based coherence directory are coupled to be accessed in
parallel.

10. The apparatus of claim 7, wherein the cluster sharing
map-based coherence directory and the small all-core sharing
map-based coherence directory are coupled to be accessed in
series.

11. The apparatus of claim 1, wherein the plurality of cores
comprise at least thirty-two cores.

12. The apparatus of claim 11, wherein the plurality of
cores comprise at least one hundred cores.

13. A method comprising:

storing corresponding pairs of addresses and cluster iden-

tifiers in multiple sets and ways of a tag array of a cluster
sharing map-based coherence directory, each of the
addresses to identify data, each of the cluster identifiers
having a plurality of bits to identify only a single one of
aplurality of clusters, wherein each address corresponds
to only a single cluster identifier, the clusters logically
grouping a plurality of cores;

storing cluster sharing maps in a cluster sharing map array

of the cluster sharing map-based coherence directory,
each of the cluster sharing maps corresponding to one of
the pairs of addresses and cluster identifiers in a corre-
sponding way of the tag array, each of the cluster sharing
maps to indicate intra-cluster sharing of data identified
by the corresponding address by cores within a cluster
identified by the plurality of bits of the corresponding
cluster identifier; and

determining inter-cluster sharing of data corresponding to

a given address by accessing from the cluster sharing
map-based coherency directory a plurality of cluster
sharing maps each corresponding to the given address
and each having a different cluster identifier.

14. The method of claim 13, further comprising logically
grouping the cores into the clusters, wherein logically group-
ing comprises logically grouping at least one hundred cores
into the plurality of clusters.

15. The method of claim 13, further comprising indicating
inter-cluster sharing of a given data identified by a given
address between a first cluster and a second cluster by:

storing both a first cluster identifier to identify the first

cluster and a second cluster identifier to identify the
second cluster in different ways of a same set of the tag
array; and

storing both a first cluster sharing map to indicate intra-

cluster sharing of the given data within the first cluster
and a second cluster sharing map to indicate intra-cluster
sharing of the given data within the second cluster in
different corresponding ways of a same set of the cluster
sharing map array.

15

20

25

30

40

45

50

30

16. The method of claim 13, further comprising generating
an all-core sharing map from a plurality of cluster sharing
maps each corresponding to a given address and each corre-
sponding to a different cluster identifier.

17. The method of claim 16, wherein generating the all-
core sharing map comprises rearranging the plurality of clus-
ter sharing maps, from positions where they are stored in the
cluster sharing map array, to positions in the all-core sharing
map, based on the different corresponding cluster identifiers.

18. The method of claim 13, further comprising comparing
aplurality of addresses in a plurality of different ways of a set
of'the tag array with a reference address and indicating which
of multiple addresses match the reference address.

19. The method of claim 13, further comprising logically
grouping the cores into the clusters, wherein logically group-
ing the cores into the clusters comprises logically grouping
the cores into clusters of non-overlapping sets of cores of
equal size.

20. The method of claim 13, further comprising accessing
a small all-core sharing map-based coherence directory hav-
ing no more than twenty entries per core, the small all-core
sharing map-based coherence directory storing correspond-
ing pairs of addresses and all-core sharing maps, each of the
all-core sharing maps to indicate sharing of data identified by
a corresponding address by any of the plurality of cores.

21. The method of claim 20, further comprising accessing
the cluster sharing map-based coherence directory in parallel
with accessing the small all-core sharing map-based coher-
ence directory.

22. The method of claim 20, further comprising accessing
the cluster sharing map-based coherence directory in series
with accessing the small all-core sharing map-based coher-
ence directory.

23. The method of claim 22, wherein the cluster sharing
map-based coherence directory accesses the small all-core
sharing map-based coherence directory.

24. The method of claim 20, wherein accessing comprises
accessing a small all-core sharing map-based coherence
directory that has no more than fifteen entries per core.

25. A system comprising:

amulti-core apparatus, the multi-core apparatus including:

a plurality of cores, the plurality of cores logically grouped
into a plurality of clusters;

a memory controller coupled with a first core of the plu-
rality; and

a cluster sharing map-based coherence directory coupled
with the plurality of cores configured to track sharing of
data among the plurality of cores, the cluster sharing
map-based coherence directory including:

a tag array configured to store corresponding pairs of
addresses and cluster identifiers, each of the addresses to
identify data, each of the cluster identifiers having a
plurality of bits configured to identify only a single one
of'the clusters, wherein each address corresponds to only
a single cluster identifier; and a cluster sharing map
array configured to store cluster sharing maps, each of
the cluster sharing maps corresponding to one of the
pairs of addresses and cluster identifiers in a way of the
tag array that is configured to store the corresponding
cluster identifier, each of the cluster sharing maps con-
figured to indicate intra-cluster sharing of data identified
by the corresponding address within a cluster identified
by the plurality of bits of the corresponding cluster iden-
tifier; and a memory coupled with the memory control-
ler, wherein the memory comprises a dynamic random
access memory (DRAM).

US 9,424,191 B2

31

26. The system of claim 25, further comprising logic con-
figured to indicate inter-cluster sharing of a given data iden-
tified by a given address between a first cluster and a second
cluster by storing both a first cluster identifier configured to
identify the first cluster and a second cluster identifier con-
figured to identify the second cluster in different ways of a
same set of the tag array, and by storing both a first cluster
sharing map configured to indicate intra-cluster sharing of the
given data within the first cluster and a second cluster sharing
map configured to indicate intra-cluster sharing of the given
data within the second cluster in different ways of a same set
of the cluster sharing map array.

27. The system of claim 25, further comprising logic con-
figured to generate an all-core sharing map from a plurality of
cluster sharing maps each corresponding to a given address
and each corresponding to a different cluster identifier, by
rearranging the plurality of cluster sharing maps, from posi-
tions where they are stored in the cluster sharing map array to
positions in the all-core sharing map, based on the different
corresponding cluster identifiers.

#* #* #* #* #*

10

15

20

32

